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Abstract

Hybrid solar panels, or photovoltaic-thermal (PVT) systems, simultaneously con-
vert solar radiation into electricity and heat within the same unit. This study anal-
yses a dataset obtained from a hybrid solar panel with an experimental setup. A
polynomial regression model based on three variables: solar irradiance, fluid flow
rate, and thermal output energy. Analysis produced a polynomial model correlating
these variables with thermal efficiency (nt), achieving a determination coefficient
of R? = 0.8870. Contour and surface plots of the performance coefficient as func-
tions of input variables are provided, along with a residual analysis to assess the
model's accuracy.

Keywords: Hybrid solar panel; Photovoltaic-thermal system; Residual analysis.

1. Introduction

Hybrid solar panels, or photovoltaic-thermal (PVT) systems, this dual-use de-
sign improves energy utilization by capturing and managing heat generated by
photovoltaic cells, improving their efficiency and regulating operating tempera-
tures [1].

A PVT system integrates a photovoltaic module with a thermal collector, of-
fering higher energy generation density compared to separate systems. This unified
approach contributes to the development of sustainable solutions for both electric-
ity and heat production [2]. Prior studies have shown that transparent covers min-
imize thermal losses and energy dissipation, thereby improving system perfor-
mance [3].

Since the early 2000s, global collaboration on PVT technologies has intensi-
fied. However, deployment challenges persist, requiring further research. Accurate
modelling of input-output relationships is crucial for optimizing performance. Re-
searchers have employed experimental mathematical models, regression tech-
niques, artificial neural networks, and time-series-based statistical methods to pre-
dict solar system performance [4][5].

Among regression techniques, polynomial fitting offers a practical and accu-
rate method for modelling nonlinear relationships. Escobedo et al. [6] compared
artificial neural networks (ANNs) with polynomial models, concluding that alt-
hough ANNs may outperform in accuracy, polynomial models are advantageous
due to their simplicity and ease of derivation.



This study proposes an efficient methodology to model PVT system perfor-
mance using polynomial regression, reducing reliance on complex equations while
achieving accurate coefficient estimation.

2. Materials and Methods

Figure 1 presents a schematic diagram of the experimental setup installed on
a hybrid solar panel. System consists of a variable-speed circulator, Rilsan tubing,
a thermostatic water bath, and a flow sensor used to measure the flow rate, as de-
scribed by Matteo et al. [7].

DATA
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Figure 1. The experimental setup. Matteo et al [7].

After exiting the aluminum block, working fluid is cooled in a thermostatic
water bath before being recirculated by a pump to the cold inlet side, maintaining
a constant temperature. To measure thermal and flow parameters, type K thermo-
couples were installed and connected to a DAP interface, which also records the
frequency signal from a flow meter to calculate the system’s mass flow rate. Ad-
ditionally, a pyranometer was used to measure the solar radiation flux density
(W/m?) in the experimental environment. Data acquisition and processing were
optimized using an integrated LabVIEW interface, enabling efficient management
of the experimental data [7]. Table 1 presents the operating range of the measured
pyranometers.

Table 1. Experimental operating conditions range of PVT system.

Variable Name Operating Range Units Label
Irradiance 897 — 1087 W/m? V1

Fluid flow rate 1.9-23 L/min V2

Thermal energy 63.9-100.9 w V3

A dataset was generated based on the specific operating conditions of the sys-
tem, considering various parameters including fluid flow velocity, inlet and outlet
sink temperatures, solar irradiance, ambient temperature and cell’s open-circuit
voltage.

The instantaneous thermal efficiency of the PVT system (nt) was determined
as the ratio of the thermal power generated to the incident solar power, as expressed
in Equation (1):

1=Q/Q;, (1



The input power (Q;) is calculated as the product of the solar irradiance (G)
and the collector’s aperture area (A), as shown in Equation (2):

Q=G.A, 2)

Thermal power output (Qt) corresponds to the amount of heat extracted by
working fluid. It is proportional to difference between outlet and inlet fluid tem-
peratures (AT), mass flow rate (mh), and specific heat capacity of the fluid (Cp), as
described in Equation (3):

Q=m.Cp.AT, 3)

Methodology

This section presents a methodology for developing a polynomial model that
defines relationship between performance coefficient and system's operational var-
iables. This approach enables accurate system characterization and enhances pre-
dictive analysis. Construction of polynomial model is based on previously estab-
lished input variables. To generally represent relationship between these variables
and performance coefficient, Equation (4) is introduced.

n=p(V1, V2, V3) +¢, @)

Let p be an indeterminate polynomial function and € a random error term. It is
assumed that this error term follows a standard normal distribution.

Figure 2 shows correlation matrix between input variables, which is used to assess
the degree of correlation among independent variables.
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Figure 2. Input variables correlation matrix.

3. Results

With purpose of determining a polynomial model that offers best balance be-
tween model fit and parsimony, multiple linear regression is used to analyze the
relationship between variables (V1, V2, V3) and the experimental performance
coefficient (nt).

Table 2, presents performance coefficients corresponding to a linear combina-
tion of monomial terms included in model, excluding only constant term, which is
equal to 50.1626.



Table 2. Performance coefficient of each term in polynomial model.

Factor Performance coefficient
V12 0.3715
V2 -46.4592
V2?2 -227.5152
V23 124.9192
V3?2 -0.0032
(V1) (V2) 55.2697
(V1)(V2?) 242.5250
(V2)(V3) -121.0381
(V2)(V3) 17.4685
(V22)(V3) - 577.8241
(V1)(V2H)(V3) 65.4707
(V1)(V2)(V3?) -4.3044

In pursuit of a more streamlined polynomial model—with fewest variables
and highest possible coefficient of determination (R?)— Several term combina-
tions were evaluated. Finally, Equation (5) was identified as optimal model,
achieving an R? value of 0.8870.

n = 50.1626 + 0.3715(V12) - 46.4592(V2) - 227.5152(V22) + 124.9192(V23) ...

- 0.0032(V32) + 55.2697(V1)(V2) + 242.5250(V1)(V2?) - 121.0381(V2)(V3) ...
+17.4685(V2)(V3?) - 577.8241(V23)(V3) + 654707(V1)(V2A)(V3) -
4.3044(V1*¥V2)(V3?)

)

Polynomial in Equation (5) stands out for having the highest R* compared to
other combinations and, furthermore, for its compact structure with a smaller num-
ber of related variables. As R? increases, complexity of the model also tends to
increase

In Figure 3, it can be observed that relationship is approximately linear be-
tween experimental performance coefficients and predicted values, to demonstrate
validity of this polynomial regression model.
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Figure 3. Experimental performance coefficient versus predicted values.

Residual Analysis

Given that variables in polynomial Equation (5) include irradiance, flow rate,
and thermal energy, a graphical representation of the polynomial predictor’s be-
havior is presented. In this plot, experimentally obtained performance coefficients
are compared with the predicted values (Figure 3).



Efficiency

Since polynomial regression model incorporates three distinct variables, con-
tour plots are generated in Figure 4 and surface plots in Figure 5, illustrate corre-
lation between predicted values versus experimental data points.
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Figure 4. Contour plots. Comparison of experimental performance coefficient and predicted values
for each significant variable in polynomial model.
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Figure 5. Surface plots. Comparison of experimental performance coefficient and predicted values

for each pair of significant variables in polynomial model.

Figure 6 presents residuals histogram, which exhibits a bell-shaped distribu-
tion. On the right end of the diagram, slight deviations indicate an imperfect sym-
metry. This characteristic is further examined in Figure 7, where the relationship
between the predicted performance coefficient and the standardized residuals is
shown. Two horizontal reference lines at values of 3 and -3 are included. Outside
these boundaries, five outliers are identified, which may influence polynomial

model.

Improve the accuracy of the fit, these outliers were excluded from the dataset,
resulting in an improved coefficient of determination of R* = 0.9466.



4 T T T T T
3 * * *
* *
2r 1
*
*
* * * ]
e * *% * *F *
% % * % * *
0 * o Kok g ¥k ok * g %
* * . * g ¥ * *
* % gk
1 % # ¥ e §
* *
2+ % g
*
-3 %*
*
4+ 1
5F g
*
-6 1
0 10 20 30 40 50 60

Figure 7. Standardized residuals.

Finally, to assess independence of residuals, Figures 7 and 8 are presented.
Figure 8 specifically illustrates confidence intervals for each residual (green lines),
with central point’s indicating residual values and red lines identifying outliers.
These visualizations confirm that presence of a substantial number of outliers neg-
atively impacts model's stability, resulting in a decreased correlation coefficient.

Outliers introduce significant variability into datasets, reducing the model's
ability to accurately capture relationship between variables. Notable difference
compared to initial R? value of 0.8870 demonstrates that these anomalous data
points indeed interfere with the model's performance. Furthermore, standardized
residuals deviate from a Gaussian distribution cantered at zero and exhibit non-
constant variance, violating key assumptions of polynomial regression.
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Figure 8. Predicted performance coefficient versus standardized residuals.

Primary purpose of ANOVA analysis is to evaluate experimental errors and
perform a significance test to determine correlation between factors versus exper-
imental performance coefficient (). Table 3 presents correlation degree of factors
based on variables V1, V2, and V3, including their three-way interaction, accord-
ing to analysis of variance.

F-values obtained for each factor are remarkably high (F = 7433.32 for indi-
vidual variables and F = 6797.58 for the interaction), accompanied by extremely
low p-values (all « 0.05), clearly indicating that the contributions of V1, V2, and
V3, both individually and jointly are statistically significant.

Table 3. ANOVA analysis of independent variables.

Factor SS DF MS F Prob >F
V1 79480 1 79479.97 7433.32 2.0358 e-108
V2 79480 1 79479.97 7433.32 2.0358 e-108
V3 79480 1 79479.97 7433.32 2.0358 e-108
(V1) (V2)(V3) 1379.7 3 39738.99 6797.58 9.61865 e-229
Error 1261.7 118 10.65

The polynomial regression model yields:
F=30.74 and p<0.001
These values indicate a strong statistical significance. Since:
p<0=0.05

The null hypothesis Ho: 1 = B2 --- Bk = 0 is rejected, confirming that the
model terms, taken together, significantly explain the variance in the dependent
variable (nt). Results confirm model validity and usefulness for predictive appli-
cations.

Table 4 presents a comparative summary of modelling approaches used to es-
timate efficiency in photovoltaic-thermal (PVT) systems, focusing on predictive
accuracy based on R2. Although complex models tend to yield higher R? values,
they aren’t always the most practical choice. In many cases, a simple polynomial
model offers advantages, lower complexity, easier interpretation, and reduced
overfitting risk, especially when working with limited or extrapolated data.
Slightly lower R? may be acceptable if it improves robustness and generalization,
making model applicable under real-world conditions where data often deviate
from ideal patterns.



Table 4. Evaluation of Accuracy and Deviation in Efficiency Prediction Models for PVT Systems

with Extrapolated Data.
Author Method R?

Payman et al. [8] Evolutionary Polynomial Regression 0.8836
Linear 0.8865

Garcia [9] Polynomial 0.8686
Persistent 0.8114

Hossein et al. [10] Rand.om Forest 0.9862
Multilayer Perceptron 0.8775
Support Vector Regression 0.7639

Bautista et al. Polynomial 0.8870

5. Conclusions

A polynomial model was successfully developed using three operational var-
iables to predict performance coefficient of a photovoltaic-thermal (PVT) system.
Results show that increasing coefficient of determination (R?) leads to greater pol-
ynomial complexity. Model achieved an R? = 0.8870, outperforming results re-
ported by Payman et al. [8], Garcia [9], and Hossein et al. [10], whose approaches
involved higher error terms. Despite its simplicity, proposed method proves ad-
vantageous by delivering lower prediction errors.

Findings indicate that, even with a simplified structure, proposed model sur-
passes conventional approaches in accuracy. In particular, the estimation of PVT
system’s independent variables shows high agreement with actual values, high-
lighting the model’s reliability and effectiveness in characterizing system behav-

10r.
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Abstract

Several methods have been developed to estimate energy efficiency of induction
motors, and the accuracy of these methods varies with load factor, voltage and
harmonics. In this work, a polynomial model was developed to predict energy ef-
ficiency coefficient in a induction motor (De Lorenzo DL 1021) using electrical
and mechanical parameters, through a dependent variable and independent varia-
bles, obtaining an R? value of 0.9926.

Keywords: Energy efficiency, Induction motor, Polynomial model, Polynomial,
Balanced voltage

1. Introduction

Induction motors (IM) represent approximately 70% of energy consumed by
industry. Currently, only motors with a greater power than 500 hp are generally
monitored due to they cost. Nonetheless, motors less than 500 hp represent 97%
of motors in operations and consume 71% of energy used. On average, these mo-
tors do not operate more than 60% of their rated load due to oversized installations
of low-load conditions, resulting in poor efficiency and wasted energy [1].

Regulatory frameworks have been established in different countries to reduce
energy consumption. These regulations aim to improve average efficiency of IM
available on the market. Requiring companies to comply with efficiency standards
[2]. Efficiency and load factor monitoring in real-time are essential to evaluate the
energy efficiency of inductions motors. However, assessing these parameters re-
quires highly intrusive and costly methods.

As measurements in-situ alternatives, several methods have been developed
to estimate efficiency and load factor, known as energy efficiency estimation meth-
ods. Some of these methods include the slip method, current method, equivalent
circuit method, torque method, among others [3], which are mainly influenced by
load factor [4].

One of the most effective approaches to analyzing IM, is characterize the pa-
rameters of its equivalent circuit. These parameters allows for determinant of a
mathematical model representing electrical and magnetic effects occurring within
induction motor [5].

In this study, an empirical prediction model was developed and validated
based on polynomial construction through multiple linear regression analysis to

10



behavior predict of energy efficiency coefficient using electrical and mechanical
parameters. Unlike existing studies that focus on achieving the highest prediction
accuracy, our objective is construct a simple and easy-to-use model for industrial
applications.

2. Experimental Data

The data used to adjust a model were obtained from experiment conducted on
a test bench with a three-phase induction motor of 1.1 kW (De Lorenzo DL 1021),
a brake control unit (De Lorenzo DL 1054TT) and a magnetic powder brake (De
Lorenzo DL 1019P) [6]. Figure 1 shows configuration diagram of experimental
test used for balanced sinusoidal voltage.

Database used to get a polynomial was obtained varying torque from 0.50 to
3 Nm in intervals of 0.25 Nm, while simultaneously measuring electrical and me-
chanical parameters shown in Table 1. To ensure the reliability and consistency of
results, each test was repeated 10 times. A stable temperature was maintained dur-
ing test; for this purpose, in each interval, measurements were taken after temper-
ature had stabilized.

Mechanical output power, Equation 1, was calculated using torque and rotor
speed measurements [7]:

Tshage "

_ - m 1
Pout 9.549 M

Efficiency, Equation 2, was calculated using input and output power values

[8]:

Pout
=22.100% )
P in
Table 1. Electrical and mechanical parameters.
Electrical Parameters Symbol Mechanical Parameters Symbol
Line voltage Vb Voer Vea Output power Pyt
Voltage angles Bab» Oper Oca Shaft torque Tsnafe
Line current Iy, 1,1, Rotor speed N
Current angles Dy, D1, D Load factor L.
. Erake control unit:
Power quality analyzer: De Lorenzo DL 1054TT
Fluke 435 series 6
— O @] (o]
N R
— |1 /3
Voltage source:
De Lorenzo DL —> -« Vap

1013M3

Torque control
Speed sensor
Torgue sensor

Induction Motor:
De Lorenzo DL
1021

Magnetic powder brake:
De Lorenzo DL 1019 P

Figure 1. Schematic diagram of experimental test setup for balanced sinusoidal voltage.
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3. Methodology

Generally, relationship between variables of interest, Energy Efficiency coef-
ficient (EEC), and associated variables (inserter variables), are unknown but can
be approximated using a polynomial model as follows [9]:

ECC = p(Tshaft; Pin' N, Vabr Vbcv Vcar Qab’ ch, gcar Ia' Ic: IC! ¢a! ¢b! ¢C! Lc)

+ ¢ ®)

Where p is an unknown polynomial function and ¢ is random error. Is as-
sumed that ¢ is a random variable with a standard normal distribution. Equation 3
defines the following set of predictor variables (Equation 4)

A={Vy, .., Vip|i=1,..,12} (4)

In Table 2, measured data assigned to a variable for polynomial construction
can be observed. To obtain a simple polynomial, variable combinations used of
first degree. Cardinality of set A is equal 12, due to are 12 terms in form V. There-
fore, there are 2!2 — 1 subsets of A, excluding the empy set.

A linear regression was performed between subsets of A and EEC to find a
simple polynomial that fits data. As mentioned in the previous paragraph, there are
too many subsets of A; therefore, depend variables were discarded, resulting in
variables shown in Table 3.

Thus, number of combinations required for test is: 27 — 1=127.

Then, coefficient of determination (R?) was calculated for each combination
of variables and Energy Efficiency coefficient (EEC), and combination with high-
est coefficient (R?) was selected.

Table 3. Selected variables.

Table 2. Measured variables V; Variable Unit
V; Variable Unit 52 II} \g
4 ab
|4 Tsha ft Nm Ve Veg \V4
V2 i W Vs O 6
V3 N, Rpm VlO Ia A
Va Vas M Viz I, A
Vs Vbe v Vig bp 0
Ve Vea v
v, O.ap 0
Vg Ope 0
A 0. 0
Vio I, A
Via I A
Vis I. A
V13 ¢a 0
Via o 0
V15 ¢c 0
Vie L p.u
4. Results

Considering a polynomial that fits experimental EEC, highest determination
coefficient is sought. Due to simplicity of polynomial obtained, Equation 5 was
chosen, with a determination coefficient R? of 0.9926, indicating a polynomial
model accounts for 99.26% of variability in energy efficiency coefficient.
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EEC = 229.9383 + 0.2726(V,) + 3.1024(V,) — 2.3638(V,)
—1.0961(Vy) — 36.3166(Vy,) — 14.8443(V;,) (5)
— 54.1092(V,,)

In Figure 2, a positive relationship between predicted EEC and experimental
EEc is shown, suggesting, in general as predicted efficiency coefficient increases,
actual also tends to increase. This positive correlation indicates that model can
capture general trend of EEC’s behavior.

Considering variables involved in polynomial, graphs were generated to im-
prove a geometric perspective on behavior of predicted polynomial, experimental
data and efficiency coefficients.

To obtain a geometric representation of predicted polynomial’s behavior,
given that our polynomial consists of seven variables, level curves and surface
plots were generated for each of them, as shown in Figures 3 and 4, respectively.
These figures illustrate the behavior of the variables in relation to our polynomial
versus the experimental data.
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D
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Figure 2. Experimental vs Predicted Efficiency Coefficient for the database.
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4.1. Residual analysis

In this section, a residual analysis will be performed to verify polynomial fit
of Equation 3. According to hypothesis, Equation 3 follows a Gaussian distribu-
tion, “under the assumption that it has a zero mean”, expected value (E) can be
taken on both sides of equation as follows:

E(ECC)

= E(p(Tshaft» Pin' Nm, Vab' Vbcr Vca' eab: ebcr eca' Iar Ic' Icr (par (pb; ¢cr Lc)
+ e)

=E (p(Tshaftv Pin' N, Vab: Vbc' Vcar eab' ebc' ecar Ia' Icr Ic' d’a' (»bb' d’c' Lc))
+ E(¢)

ECC

=E (p(Tshaftv Pin' N, Vab: Vbc' Vcar eab' ebc' ecar Ia' Icr Ic' d’a' (»bb' d’c' Lc))

Considering last equation, experimental performance coefficient and polyno-
mial p would be equal on average. To determine whether e follows a normal dis-
tribution with zero mean and constant variance, a histogram of residuals was used
(Figure 5). As observed, histogram has a bell-shaped form, suggesting that most
residuals are concentrated near 0. This is done to ensure that residuals have zero
mean and variance 1.

30

25

20

Figure 5. Histogram of residuals.

Residuals were plotted in Figure 6, along with two horizontal lines at 3 and -
3. In this experiment, no points were found outside the interval; only one value
approached these lines, so it considering that all residuals comply with the 3-sigma
rule. This means there are no significant outliers, helping to confirm that residuals
follow the expected distribution.

In Figure 7, outliers are observed. To verify whether these values affect poly-
nomial model, five outliers were removed, and a new linear regression was per-
formed without them. A new R2 value of 0.9942 was obtained. The difference
compared to R2 = 0.9926 with outliers is not significant, meaning outliers don’t
interfere with our sample. Thus, it can be concluded that residuals follow a Gauss-
ian distribution with a mean of zero and a variance 1.

To verify that the data obtained from experiment are reliable for our polyno-
mial, statistical F-test and p-value were applied [10]. To calculate the F-statistic,
Equation 6 is used.

16



SSR

F. _ dfModel 6
value — SSE ( )
derror
4
3
2 .
%}
©
3
2 1+
1o}
4
E 0 g i -
8.l
c
Ar]
7]
.2:
-3
G L A L i .
0 20 40 60 80 100 120

Observation Index

Figure 6. Standardized residuals.

Residual Case Order Plot

Residuals

10 20 30 40 50 60 70 80 90 100 110
Case Number

Figure 7. Predicted EEC vs residuals.

Where SSR is sum of squared differences between model data and mean of
experimental data, SSE is sum of squared residuals, dfy,q4e; represents degrees of
freedom in polynomial, dfg,.,, corresponds to degrees of freedom of error as ex-
pressed in Equation 7, and n is number of rows in the database:

Aferror =N — Afyoger — 1 (6)

These data were used for hypothesis, which consisted of two hypotheses: a
null hypothesis Hy and an alternative hypothesis H;. For null hypothesis, assump-
tion was made that there is no relationship between independent variables and en-
ergy efficiency coefficient, while alternative hypothesis represents opposite-that
there is a relationship between variables and EEC. Aim was to validate only one
of these hypotheses.

P-value obtained is extremely small 1.1311e-'%, indicating that probability of
results occurring by chance is practically zero, meaning that null hypothesis is
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highly improbable. Regarding F,41,e > Feriticar- In other words, data suggest that
effect of independent variable is significant, validating that our polynomial has a
real impact on variability of data. Thus, we accept the alternative hypothesis.

Table 4. ANOVA table results.

Source SS df MS F Prob > F
Columns 7.31469 x 107 8 Nm 1047.27 0
Error 8.56477 x 10° 981 w
Total 8.17117 x 107 989 Rpm

To verify that variables used in our polynomial are independent, an analysis
of variance (ANOVA) was performed between variables used for polynomial and
experimental EEC, with results shown in Table 4.

Since p-value is 0, we reject null hypothesis, which in this case states that there
are no significant differences between means of analyzed groups. This means that
there are indeed significant differences among the groups (columns). In simpler
terms, at least one of the group means is significantly different from others, sug-
gesting that analyzed factor has a real effect on measurements.

5. Conclusions

Losses in a three-phase induction motor can use many adverse effects, such as
excessive heating, reduced life span increased energy consumption. These factors
contribute to higher operating costs and greater environmental damage resulting
from inefficient energy use. Therefore, real-time monitoring of motor energy effi-
ciency during operation in essential for any induction motor (IM). This requires a
sensor in-situ capable of providing such information without the need for addi-
tional equipment. Resulting polynomial can calculate EEC, thus reducing costs by
relying solely on motor’s existing electrical parameters.

In this study, a polynomial was used to predict energy efficiency and induction
motor. Favorable results were obtained and a polynomial model with a good de-
termination coefficient (R?) was achieved, capable of predicting energy efficiency
in situ. This high precision suggests that polynomial model captures relationships
between operating variables and energy efficiency coefficient.
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Abstract

Prototype used is a mobile wick solar still with passive external condenser, powered
by solar energy, developed by the company IPFH2O. Performance modeling
involved analysis of global irradiation and temperature parameters. Two polynomial
models are proposed to estimate coefficient of performance energy (COP) and
coefficient of performance exergy (COPexc), With coefficients of determination of
0.9855 and 0.9985, respectively. Study provides a fast method to estimate energy
efficiency and exergy efficiency without requiring complex measurements.

Keywords: Solar still, Global irradiation, Performance coefficient.

1. Introduction

Water purification and distillation using solar radiation is an evolving technique that
offers economic advantages, such as electricity savings and water availability in
remote areas, avoiding transportation costs [1]. However, this technology suffers
from drawback of low efficiency, which may explain its limited adoption [2]. Water
production in passive solar stills [3] is influenced by key parameters such as solar
irradiation and temperature gradients [4]. Furthermore, these systems can be
employed for water desalination via distillation, recognized as one most fundamental
and cost-effective purification techniques [5]. Prototype features a 45° tilt angle and
a double-glazing configuration to enhance thermal performance and overall system
efficiency [6].
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2. Materials and Methods

Tests were conducted over four days since October until December 2021 under
climate conditions of Rennes, France. Manual solar monitoring of system was
conducted at one hour intervals during the test days. [2]. Figure 1 shows prototype
used.

a) Evaporator tray _a#® Connection cap
C/ g N ’: >
Condenser &~ Ny
\. < / </
‘9/ /( //
§ 4l 2 -9%7 N,
Frame /’N -
L8 Tilt adjustment sygem
Double glazing
b) Double glazing

Metal chain conveyor belt

s

. Electric motor

i

Condenser Thermal insulation in Cork

Support for a simple mechanical pivot link

Figure 1. a) Components of the mobile solar still with Passive Condenser, b) Components

of the evaporator tray of the solar still [2] I
n

this section the objective is to describe a model for each coefficient of performance
(COP and COPexe). Polynomial fitting was performed using experimental energy
efficiency data as a function of global irradiation (I;) and mobile wick temperature
(Tw). Hourly energy efficiency was determined according to Equation 1.

nr= (muL)/(AyL) (1)
L=3.1615x 10— (7.616 x 10* * Ty) )
Where:

nu: Hourly energy efficiency.

my: Mass of water produced per hour in kg.

L: Latent heat of vaporization of water in J/kg.

Aw: Area of the wick surface exposed to the sun in m?.
Tw: Wick temperature in °C.

Ii: Global irradiation in W/m?.
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The fitting is similar to Equation 3 with two input variables, where p is a polynomial
and € represents random noise assumed to follow a normal distribution [7].

COP=p(Ty, I,) +¢€ (3)

Model has a coefficient of determination R? of 0.9855, indicating that it explains
most of the variability. Similarly, experimental exergy data were used to fit a
polynomial model based on collected variables: Wick temperature (Tw), Global
Irradiation (I;), Ambient Temperature (T.), and Interior Glass Temperature (Tg;).
Exergy was calculated using Equation 4.

Nexer = EXout/EXinp 4)

Where:

Nexer: EXErgy

Exout: Exergy related to evaporation process in the space between wick and inner
glass.

Exinp: Exergy of the solar radiation absorbed by the wick.

Fitted model for exergy is presented in Equation 5, with four input variables.

COPexe = p(TWa Ir: Tgi, Ta) te (5)

It achieved a coefficient of determination R? of 0.9985, indicating that 99.85% of
the variability in exergy coefficient of performance can be explained by this
polynomial model.

System variables are shown in Table 1.

Table 1. System variables.
Variable Unidad

x1 Tw °C
x2 I, W/m?
x3 Ta °C
x4 Tgi °C

Input 1 (x1): Temperature of the mobile wick, 2 °C lower than temperature inside
the evaporator tray. Due to wick is absorption of water and heat, its temperature can
be slightly lower [8].

Input 2 (x2): Global irradiation, corresponding to values obtained with an analog
pyranometer during the experiment.

Input 3 (x3): Ambient temperature.

Input 4 (x4): Inner glass temperature.

Polynomial fitting method is an effective strategy for predicting the behavior of a
dependent variable within a system, using measurements from collected data [9].
Two polynomial models were developed to predict behavior of two indicators: the
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energy performance coefficient (COP) and the exergy performance coefficient
(COPexe).

Both polynomials were obtained through multivariable polynomial regression,
seeking the relationship between the independent variables and the performance
coefficients. Models include both linear and interaction terms.

3. Results

Energy Efficiency Model (Eq. 6): This model is a third degree polynomial with
two independent variables, Tw and I, composed of nine terms. The selection of the
independent variables was based on Eq. 1, where water mass produced per hour
(mp) and surface area of the wick exposed to the sun (Ayw) were considered constant.

COP = 110.4348 + 4.4378(x1) — 1.3355(x2) — 0.2966(x1)? + 0.0045(x2)?
~3.9751x1074(x1)(x2) + 0.0063(x 1)~ 4.7245x10°5(x2)? (6)

Exergy Model (Eq. 7): A quadratic polynomial was constructed, consisting of 15
terms. Four independent variables were considered for its development: Ty, I, Ta,
an Tgj, which are used in the experimental exergy.

COPeye = —238.7276 — 1.7037(x1)>+ 0.0006(x2)>~ 3.3545(x3)>— 3.7648(x4)>?
—0.0310(x1)(x2) + 5.7139(x1)(x3) + 5.2319(x1)(x4) + 43.000(x2)(x3)
+0.0271(x2)(x4) — 5.5808(x3)(x4) — 74.8790(x1) + 0.3003(x2)

+47.8111(x3) + 82.5614(x4) (7)

Figure 2b shows low correlation between independent variables, which benefits
obtained model for Energy Efficiency. On the left, plot of Experimental vs
predicted Efficiency confirms a satisfactory data fit, showing how points align with
trend line.
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Figure 2. a)Experimental versus predicted coefficient of performance for database, b)
correlation matrix between input variables. Energy Efficiency.

Exergy indicates how much energy content can be utilized from system. In a solar
still, energy losses are lower compared to other equipment such as boilers [10],
which facilitates model application. This is reflected in graph of experimental vs
calculated exergy values (Figure 3), where proximity of points to trend line
indicates a good model fit.
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Figure 3. a) Experimental versus predicted coefficient of performance for database, b) correlation
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3.1 Residual Analysis

This section presents evaluation of residuals using histograms and probability plots
to determine their normality. In addition, residual plots are generated to identify
outliers, which helps verify quality of polynomial model [10]. To understand
behavior of two developed polynomials, experimental and predicted coefficients of
performance corresponding each one are graphically represented. Both polynomials
include different variables, contour plots are generated for each of them. Graphical
representations are shown in Figures 4, 5, 6, 7, 8, and 9. Agreement between
predicted and experimental values is observed.
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Figure 4. Level surfaces. Comparison of experimental and predicted coefficient of performance
for each variable significant in the polynomial model Energy Efficiency
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Assuming that models described in Equations 3 and 5 follows a Gaussian
distribution, residual histograms were constructed for each coefficient of
performance, following methodology outlined by Montgomery [10]. Histograms
have a bell-shaped form, as shown in Figure 10. However, in Exergy case , a
notorious bar appears at end of histogram, which may indicate the indicate of
outliers (see Figure 11).

15

10

Figure 10. Histogram of residuals for Energy Figure 11. Histogram of residuals for Exergy
Efficiency.

Figure 12 was generated to show fitting goodness of proposed models. Displays
standardized confidence intervals (green lines) corresponding to each residual
(represented by circles), with outliers highlighted in red. This indicates that
predicted values closely match observed ones. Furthermore, Figures 13 and 14
show that mean of residuals is approximately zero, as their distribution remains
balanced on either side of y-axis.
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Figure 12. Confidence intervals of residuals with a 95% confidence level: a) Energy Efficiency
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residuals.

3.2 Anova

An analysis of variance (ANOVA) was carried on both proposed models (Table 2
y 3), demonstrating that each is highly significant. Null hypothesis (Ho) states that
no independent variables have a significant effect on dependent variables.
Alternative hypothesis (H) states that at least one independent variable has a
significant effect on dependent variable, meaning model explains a significant part
of observed variability. For Energy Efficiency model, Error accounts for less than
1.5% of total data variability (887.6 out of 61,068), which indicates an excellent fit
to experimental data. A p-value below 0.001 confirms that the model is highly
significant, suggesting the observed results are very unlikely under null hypothesis.
Based on F-distribution tables, for a 5% significance level and with 7 degrees of
freedom in numerator (independent variables) and 45 degrees of freedom in
denominator (total number of observations minus the number of estimated
parameters), critical value is:

Fritical = 3.065
SO,
Featcutated = 485.87 > Fritical = 3.065

Therefore, null hypothesis is rejected, and model is statistically significant. Is
accepted that at least one variable has effect on Energy Efficiency.

Table 2: Analysis of variance (ANOVA) of polynomial model for Energy Efficiency

Source Sum of Squares (SS) DF Mean Square (MS) F p-value
Model 60,181 7 8597.2 435.87 0
Error 887.6 45 19.72

Total 61,068 52

Figure 14. Predicted coefficient of performance
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Table 3. Analysis of variance (ANOVA) of polynomial model for Exergy.

Source Sum of Squares (SS) DF Mean Square (MS) F p-value
Model 15214 14 1 086.7 1313.6 0
Error 23.164 28 0.82729

Total 15238 42

4. Conclusions

During implementation of a solar still with a mobile wick, data collection can be
affected by climatic limitations, as well as difficulties in handling equipment due
to weight. The development of a model for estimating system efficiency offers
valuable support for obtaining operational data, reducing costly experimental
procedures. Two polynomial models were successfully developed to predict
coefficient of performance for Energy and Exergy Efficiency in a solar still with
mobile wick and passive external condenser, with coefficients of determination
exceeding 98% is possible to estimate system behaviour using easily measurable
variables, thus avoiding complex instrumentation.
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Resumen

Se propone un modelo polinomial, expresado en variables codificadas y naturales,
para predecir la cantidad de arsénico remanente al efectuar la extraccion de dicho
contaminante en medio acuoso empleando quitosano como medio adsorbente. Se
aplica el Método de Respuesta de Superficie (RSM) considerando las condiciones
de pH, tiempo de contacto, concentracion de arsénico y concentracion del adsor-
bente (quitosano) para proponer las condiciones Optimas en las que aumenta la
remocion de arsénico. El modelo polinomial propuesto presenta una buena apro-
ximacion, pues el coeficiente de determinacion obtenido es de 0.9983. Se presen-
taron curvas de nivel y andlisis residuales para la validacion del modelo. Este tra-
bajo pretende ser de ayuda para la prediccion de arsénico remanente y asi disminuir
la cantidad de experimentos a realizar en el analisis de extraccion de arsénico me-
diante quitosano.

Palabras clave: RSM, arsénico, contaminante, modelo polinomial, adsorcién

1. Introduccion

El arsénico es un metal pesado que se puede encontrar de manera natural en
rocas y sedimentos; sin embargo, las concentraciones de éste tienden a aumentar
en el medio natural debido a las actividades humanas, tal como la quema de carbén
que usualmente es efectuada en centrales eléctricas, industrias de fundicion de co-
bre y procesamiento de minerales [1]. En algunas ocasiones, este compuesto inor-
ganico es dificil de extraer del medio en el que se encuentra debido a las diversas
condiciones, como lo puede ser el pH [2]. Por otro lado, el arsénico es toxico al
igual que los demas metales pesados, por lo que merece atencidon especial por su
volatilidad, su capacidad de bioacumularse en el ambiente y a que es potencial-
mente cancerigeno [3].

Debido a ello, se ha estado estudiando la implementacion de diversos mate-
riales y métodos que ayuden a su extraccion, siendo el quitosano uno de los mas
empleados para dicha extraccion, el cual suele extraerse del caparazon de mariscos.
Esto se debe a que aunque existen diversos métodos que pueden emplearse para
remover el arsénico, como: oxidacion/precipitacion, coagulacion, intercambio 16-
nico y tecnologia de membranas, el quitosano presenta bajo costo, se puede con-
seguir facilmente, es biodegradable, no es toxico y posee propiedades estructurales
que favorecen la extraccion del arsénico, ya que se lleva a cabo mediante el método
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de adsorcidn, el cual es uno de los métodos mas simples y efectivos en remocion
de contaminantes [4].

Generalmente, este tipo de analisis de extraccion de contaminantes suele mo-
delarse mediante el Método de Respuesta de Superficie (RSM, por sus siglas en
inglés), pues es empleado para el analisis de procesos quimicos. No obstante, tam-
bién puede utilizarse a nivel ingenieria, ya que analiza los efectos de diversos pa-
rametros de entrada (&1, &, ..., &) que puedan influir en una respuesta de salida,
lo cual ayuda a reducir el nimero de experimentos realizados para el analisis de
remocion de contaminantes mediante predicciones, tal como se ha hecho para el
analisis de remocion de amoniaco [5]. En este método se utilizan variables codifi-
cadas (x1, x2, ..., Xx) en lugar de las variables naturales, las cuales son las variables
que se encuentran en las unidades en las que se realizaron las mediciones [6]; en
este caso, en unidades de concentracion (mg/L), pH y tiempo (min). Las variables
codificadas consisten en variables adimensionales que facilitan el andlisis sobre
qué variables tienen mayor impacto en la respuesta del proceso, ya que de esta
forma se pueden estimar los términos del modelo de forma independiente.

En el presente trabajo se busca proponer un polinomio en variables codificadas
y otro en variables naturales que sea capaz de predecir la cantidad de arsénico re-
manente al aplicar quitosano como medio adsorbente en un medio acuoso, to-
mando en cuenta la variacion de pH, tiempo de contacto, concentraciones de arsé-
nico y concentraciones de adsorbente (quitosano), y, al mismo tiempo, analizar la
relacion que presenta el tiempo de contacto con la cantidad de adsorbato inicial
presente en el proceso de remocion.

2. Metodologia

Se obtuvieron datos experimentales de Dehghani y colaboradores [7], quienes
analizan los efectos que poseen la cantidad de arsénico inicial, la cantidad de ad-
sorbente (quitosano), el pH y el tiempo de contacto en un proceso de extraccion de
arsénico. Los datos se presentan en el Apéndice A.

Para encontrar el modelo de prediccion de arsénico remanente se utilizo el
software RStudio 2021.09.1 con el Método de Respuesta de Superficie, el cual
relaciona condiciones de entrada con la variable de salida analizada; en este caso,
la variable de salida es el arsénico remanente (Ecuacion 1), donde € incluye los
efectos de errores de medicion y efectos externos que no pueden controlarse, como
los niveles de humedad, cambio de las propiedades y envejecimiento del material
[6] y se espera que presente una distribucion normal con varianza constante y me-
dia cero.

y=f (18, 8) e (1)
Sin embargo, el RSM analiza las variables codificadas (xi, X2, ..., Xk) en lugar
de las variables naturales (1, &, ..., &). Para realizar la transformacion de varia-

bles se utiliza la Ecuacion 2, en la cual se consideran los valores maximos, mini-
mos y centrales de los datos experimentales:

v = §; — [max($;) + min(§;)]/2
: [max(&;) — min(é;)]/2

Una vez efectuado el cambio de variables, la aproximacion se representa con
la Ecuacion 3:

)

y=f(xq,%3, .., %) + € 3)
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Asi mismo, se asignaron factores para identificar las condiciones experimen-
tales estudiadas (Tabla 1).

Tabla 1. Asignacion de factores

Factor Variables
A Cantidad de arsénico
B Cantidad de quitosano
C pH
D Tiempo de contacto

! Variables asignadas a cada factor empleado en el Método de Respuesta de Superficie

Los niveles de las variables de operacion (A, B, C y D) se establecieron en
tres niveles: -1 (minimo), 0 (centro), 1 (maximo), tal como se muestra en la Tabla

2.
Tabla 2. Rango experimental y codificado de las variables de operacion
Factor n Rango y l(l)iveles 1
A 194 295.5 397
B 2 3 4
4 5 6
D 45 65 75
* Se colocan datos codificados para facilitar la manipulacion de datos durante el analisis es-
tadistico.

Para validar el modelo polinomial se realizaron analisis residuales mediante
métodos analiticos y graficos. Por otro lado, se empled el RSM para analizar la
interaccion que tiene la cantidad de arsénico inicial con el tiempo de contacto en
cuanto a la adsorcidon de arsénico con quitosano.

3. Resultados y discusion

3.1. Modelo polinomial

Se presenta el modelo polinomial (Ecuacion 4) propuesto en variables codifi-
cadas, el cual presenta unidades de concentracion en mg/L:

ASyemanente = 215.51 + 82.3894 — 6.2633B + 1.7633C — 16.871D — 4.1386AB — 3.4787AD

4
— 2.2633BD + 3.7744A% + 3.232D? “)

En el polinomio se utilizaron las cuatro variables de investigacion (pH, tiempo
de contacto y concentracion de adsorbente y adsorbato), el cual posee un coefi-
ciente de determinacion de 0.9983, siendo el valor de 1 el que representa la mejor
aproximacion, lo cual indica una buena correlacion [8,9]. Por otro lado, al compa-
rar los valores de arsénico remanente predichos y experimentales (Figura 1) se
obtuvo que los valores predichos coinciden con la mayor parte de los valores ob-
jetivo, pues coinciden tanto que se obtiene algo parecido a la recta identidad, la
cual posee una pendiente de 1 y un intercepto de 0.
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Figura 1. Arsénico remanente predicho contra el arsénico remanente experimental.

La comparacién entre el arsénico remanente experimental y predicho con res-
pecto a cada variable de andlisis se muestra en la Figura 2, en la cual se puede
apreciar que la mayoria de los valores aproximados coinciden con los experimen-
tales, siendo esto otro indicativo de que el modelo polinomial propuesto presenta
buena aproximacion; dicha figura surge de un seccionamiento de superficies de

nivel en 3 dimensiones (Figura 3).
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Figura 2. Curvas de nivel. Comparacion del arsénico remanente experimental y el arsénico predi-
cho para cada variable utilizada en el polinomio: (a) concentracion inicial de arsénico; (b) concen-
tracion del adsorbente; (¢) pH; (d) tiempo de contacto.
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remanente predicho para las variables significativas del modelo polinomial: (a) tiempo de contacto
y concentracion de arsénico inicial; (b) pH del medio y la concentracion del adsorbente.

3.2. Analisis estadistico

El histograma de residuos estandarizados (Figura 4) presenta una distribucion
similar a la campana de Gauss, la cual una distribucion normal con media cero y
varianza constante.
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Figura 4. Histograma de residuos estandarizados.

Se empled el método 3-sigma, con lineas horizontales de 3 y -3 (Figura 5) para
identificar alguno de los outliers que parecen estar presentes seguin el histograma
de residuos estandarizados (Figura 4), ya que no presenta una simetria perfecta.
Sin embargo, no se pudo apreciar ningun valor atipico, pues el 100% de valores se
encuentra dentro de los valores de 3 y -3.
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Figura 5. Residuos estandarizados del arsénico remanente predicho y experimental.

Se obtuvieron los intervalos de confianza de los residuos con un nivel de con-
fianza del 95 % (Figura 6), donde los residuos se representan con puntos amarillos
y los intervalos de confianza con lineas verdes. En dicha figura se aprecian 4 va-
lores atipicos, los cuales pueden ser los que se ven reflejados en el histograma de
residuos estandarizados. Al mismo tiempo, se observa que los residuos (€) presen-
tan media cero y su varianza es constante, pues se logra un “efecto espejo” en los
intervalos de confianza, debido a que presentan una anchura similar, lo cual indica
que el valor es consistente y aleatorio en todo el rango de datos observados.

Residual Case Order Plot

Residuals

5 10 15 20 25 30
Case Number

Figura 6. Intervalos de confianza en los residuos con un nivel de confianza del 95%.

El aporte de cada variable en el modelo se analizé mediante el Analisis de Varianza (ANOVA),
Tabla 3. En dicho andlisis se puede observar que, con base al P-value, todas las variables elegidas
para el modelo polinomial son importantes y altamente importantes para lograr una buena
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aproximacion. El P-value ayuda a diferenciar resultados que son producto del azar del muestreo de
resultados que son estadisticamente significativos.

Tabla 3. Coeficientes estimados del modelo polinomial de segundo grado y resultados de

ANOVA.
Modelo cuadratico

Factor Coeficiente estimado Error estindar P-value
A 82.3887 0.8136 <0.0001
B -6.2633 0.8149 <0.0001
C 1.7633 0.8149 0.041593
D -16.8712 0.6659 <0.0001
AB -4.1386 0.8139 <0.0002
AD -3.4787 0.8124 <0.0003
BD -2.2633 0.8149 0.01098
A2 3.7744 1.2052 0.004852
D2 3.232 0.6160 <0.0001

* P<0.001 altamente importante; 0.001< P < 0.05 importante; P > 0.05 no importante.

El analisis de la interaccion del tiempo de contacto y el arsénico inicial durante
el proceso de adsorcion se presenta en la Figura 7. En dicho andlisis se utilizaron
una concentracion de adsorbente de 3 mg/L y un pH de 5; con base a ello, la mayor
cantidad de arsénico remanente se obtiene cuando el tiempo de contacto del adsor-
bato y el adsorbente se encuentra entre los 30 y 40 min con grandes concentracio-
nes de arsénico inicial, mientras que la cantidad dptima de arsénico remanente se
obtiene cuando se trabaja con un tiempo de contacto aproximado de 60 y 90 min
con concentraciones de arsénico inicial entre 200 y 250 mg/L, pues se pretende
obtener la menor cantidad de arsénico remanente posible.

Figura 7. Respuesta de superficie de la interaccion entre el tiempo de contacto y la concentracion
de arsénico inicial



El modelo polinomial en términos de variables naturales (Ecuacion 6) es el
siguiente:

ASremanente = 32.99 + 0.85461(Cas iniciar) + 14.839(Caqs) + 1.7633(pH) — 1.7206(¢)
— 0.040775(Cas iniciar * Caas) — 0.0022849(Cys iniciar * t) — 0.15089(Cpys * £) (6)
+0.00036636(Cas,iniciar”) + 0.014364(t%)

Donde: Cys inicia1» €5 1a concentracion de arsénico inicial, mg/L, Cgqs, €5 la
concentracion de adsorbente empleado, mg/L, pH, es el del medio en el que se
efectud la adsorcion, t, es el tiempo de contacto, min.

4. Conclusiones

Se obtuvo un polinomio con un coeficiente de determinacion de 0.9983, y con
base al analisis residual realizado, se puede decir que el polinomio obtenido con 4
variables puede predecir correctamente el arsénico remanente en un rango de pH
(4 a 6), tiempo de contacto (45 a 75 min), concentracion de arsénico inicial (194 a
397 mg/L) y concentracién de adsorbente (2 a 4 mg/L). Asimismo, se determind
que la concentracion de arsénico inicial y el tiempo de contacto tienen un impacto
importante en el proceso de adsorcion, pues mientras mayor sea el tiempo de con-
tacto menor es la cantidad de arsénico remanente, siendo un rango 6ptimo de ope-
racioén un tiempo de contacto entre 60 y 90 min con arsénico inicial entre 200 y
250 mg/L.
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Apéndice A

Tabla A. Datos utilizados para la obtencion del modelo polinomial.

Corrida  Casjinicial (mg/L) Cads pH Tiempo Resultado  As removido % Removido
(mg/L) (min)

1 306 3 5 60 231 75 24.51
2 397 4 6 75 274 123 30.98
3 397 4 6 45 318 79 19.9
4 397 2 4 75 298 99 24.94
5 194 4 6 75 126 68 35.05
6 306 3 5 60 221 85 27.78
7 306 3 5 60 225 81 26.47
8 306 3 5 60 223 83 27.12
9 194 4 4 75 121 73 37.63
10 397 4 4 45 314 83 20.91
11 194 4 6 45 154 40 20.62
12 399 2 6 75 301 98 24.56
13 306 3 5 60 227 79 25.82
14 194 2 6 75 131 63 32.47
15 194 2 4 45 152 42 21.65
16 397 4 4 75 272 125 31.49
17 397 2 4 45 325 72 18.14
18 306 3 5 60 224 82 26.8
19 194 4 4 45 151 43 22.16
20 397 2 6 45 339 58 14.61
21 306 3 5 60 222 84 27.45
22 194 2 4 75 133 61 31.44
23 194 2 6 45 153 41 21.13
24 306 3 5 60 226 80 26.14
25 306 3 5 30 276 30 9.8

26 306 3 5 90 198 93 35.29
27 306 3 5 60 223 83 27.12
28 306 3 5 60 225 81 26.47
29 306 3 5 60 224 82 26.8
30 306 3 5 60 221 85 27.78
31 306 3 5 60 222 84 27.45
32 306 3 5 60 223 83 27.12

* Los datos fueron obtenidos de: Experimental dataset on adsorption of Arsenic from aqueous so-
lution using Chitosan extracted from shrimp waste; optimization by response surface methodology
with central composite design. Dehghani, M. H., Maroosi, M., & Heidarinejad, Z. (2018). Data in
Brief, 20, 1415-1421. https://doi.org/https://doi.org/10.1016/1.dib.2018.09.003



https://doi.org/https:/doi.org/10.1016/j.dib.2018.09.003
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Abstract

A polynomial was developed using multiple linear regression technique to predict
final indoor air temperature at the outlet, of a 3.5 kW Mini split air conditioning
system that uses R410A as refrigerant. The model was based on an experiment that
utilized 21 sensors to measure variables such as temperature, pressure, humidity,
power at different points and components of the system. Three input control var-
iables were held constant throughout the experiment, which was conducted in a
tropical weather condition of Barranquilla, Colombia. Results showed a coefficient
of determination r*2 of 0.91, demonstrating model’s high predictive capability

Keywords: Multiple Linear Regression, HVAC Systems, Temperature Prediction.

1. Introduction

Study of HVAC systems (Heating, Ventilation and Air Conditioning) has
gained relevance because they represent 30% to 40% of global energy consump-
tion [1], [2], [3]. Energy management and energy consumption have become cru-
cial for developed countries [4], this aligned with the 2030 sustainable develop-
ment goals, that seek to reduce the carbon footprint and mitigate the effect of cli-
mate change.

Another area of interest in study of HVAC systems is comfort and indoor air
quality in buildings and residential homes; this has caused an increase in the global
demand of air conditioning [5].

HVAC Systems are typically modeled using three approaches, the one defined
as white box [6] which consists of using the laws of physics to describe the process,
the second type called gray box [7] which is made up of physical models but with
parameters calculated by algorithms and the black box model [8] where data is
collected from the system under operating conditions and a mathematical relation-
ship is found between the input and output variables (usually performance) using
statistical method such as linear regression or artificial neural networks(ANN).

Although efforts have been made to change energy use in buildings, such as
use of new materials, selection of HVAC equipment type, and operation mode [9],
energy consumption depends mainly on its control, maintenance, and use by occu-
pants [10], [11], so it is important to develop statistical and non-statistical models
for predicting indoor temperature in order to develop better control systems. In
turn, these models must contain a greater number of input variables of internal and
external to increase the accuracy in estimating the inferred variable [12], [13], [14].



Polynomial regression is a statistical tool that allows for the creation of a sim-
ple, fast, and precise empirical model to estimate a variable of interest, reducing
computational costs in control system simulations and real-time estimations
[15][16]17][18].

Objective of this work was to develop a polynomial using multiple linear
regression tool to predict final temperature of a Mini split type of HVAC system
operating in Colombia’s weather.

Independent variables with the greatest impact on final temperature were
identified, polynomial’s fit was assessed using coefficient of determination 12
,and residuals were analyzed, additionally surface and contour plots were gener-
ated to visualize relationship between predicted and experimental temperature.

2. Materials and Methods

In this study, we predicted indoor temperature at the evaporator outlet, con-
sidering final temperature of a 3.5 kW air conditioning system operating with
R410A as refrigerant.

Dataset were obtained from Ramirez-Leon et al., 2023 [5], where effects of
inlet temperature and humidity, and fan speed were evaluated through 16 interac-
tions scenarios.

Table 1 and Figure 1 show the instruments and their distribution in the HVAC
system.

Table 1. Variables measured in the experiment [5].

Diagram Reference Description

Tl Refrigerant temperature at the compressor inlet in °C
T2 Compressor surface temperature in °C

T3 Refrigerant temperature at the compressor outlet in °C
T4 Outside air temperature at the condenser inlet in °C
TS Outside air temperature at the condenser outlet in °C
T6 Coolant temperature in the condenser in °C

T7 Refrigerant temperature at the condenser outlet in °C
T8 Capillary tube surface temperature in °C

T9 Indoor air temperature at the evaporator inlet in °C
T10 Air temperature inside the evaporator outlet in °C
P1 Refrigerant pressure at the compressor inlet in PSI
P2 Refrigerant pressure at the condenser outlet in PSI
P3 Refrigerant pressure at the condenser outlet in PSI

P4 Refrigerant pressure at DX outlet in PSI
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H1 Indoor air relative humidity at air hood in %

H2 Relative humidity of the indoor air at the evaporator outlet in %

H3 Relative humidity of the indoor air at the evaporator inlet in %
11/ PO, Compressor current consumption in A/Compressor voltage in V'
12 /PO; Condenser fan current draw in A/Condenser fan voltage in V
13/ PO; Evaporator fan current draw in A/Evaporator fan voltage in V

Flow rate in the refrigerant liquid flowmeter at the condenser
F1
outlet in mL/min
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Figure 1. Mini-split diagram [5]

All data from 16 iterations were used to propose the following model accord-
ing to equation (1):

Tyo = p(Ty,....T10, P1, ... Po,Hy, ... H3, POy, ... PO3, F;) + € (D

Where p is a polynomial € the error, we assumed to follow standard normal
distribution.

Model residuals were determined; residuals defined as difference between
observed values and estimated values. were analyzed with two criterions, the
three-sigma rule and the 95% confidence interval criterion that were used to iden-
tify outlier (atypical values) which were subsequently removed. A least squares
regression was then reapplied to polish polynomial.

Polynomial performance was evaluated by determinate the coefficient of de-
termination 72 , additionally surface levels and contour lines plots were generated
to visualize relationship between predicted and experimental temperature T10 and
independent variables.

3. Results

When applying multiple linear regression the polynomial has an 72 0.9153
which indicates that the model explains at least 91% of the variability of the inter-
nal temperature at the outlet of condenser T1o [19],[20], [21], [22] by removing
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outliers the parameter r2 = 0.9576 increased, and the polynomial is according to
equation (2):

Ty = —60.7028 + 1.8178 * Ty + 1.7566 * Ty + 1.3654 x T, + 1.0400 * Ty +
0.0238 * H; + —1.0681 % P, + —0.1885 * T + —0.5032 * Ty — 0.0662 x Ty * Ty +
—0.0038 * T, * Ty + 0.0018 * T, % P, + 0.0247 % Ty % Tg + 0.0104 x Ty * T,

(@)

It indicates that the temperature 7779 only depends on variables 77, T4, 77, Ty,
Hs P;, Ts Ts which are the significant terms for the correlation coefficient, we can
infer that the most important variables determining the final temperature delivered
by the mini-split indoors depend on the conditions of the outside air (7, Ts, To, H3)),
refrigerant (77, 77, P;) and capillary tube (7s). Polynomial included:
v' Linear terms
v' Iteration terms between variables

This structure allows capturing both linear and nonlinear behavior of the var-
iables with respect to T1o

In Figure 2, we are comparing the experimental Tio  values against estimated
by polynomial, showing that most of data points fit well with regression
model

35r

(6]

30 -

N
(&1
T

20 -

T10 Estimated [°C]

6 8 10 12 14 16 18 20 22
T10 Experimental [°C]

Figure 2. Comparing estimated versus experimental value.

Contour lines were generated to compare value of T10 both experimental
value and one predicted by polynomial against independent variables, as shown in
next figures Figure 3, Figure 4, Figure 5 y Figure 6, we can notice a close match
between experimental and predicted values, demonstrating a good fit of polyno-
mial.
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Figure 3. Contour lines: (a) 710 & T4; (b) T10 & POI; (¢) T10 & T2; (d) T10 & P4.

Level surfaces are present in figures: Figure 7, Figure 8, Figure 9, Figure 10,
Figure 11, Figure 12, Figure 13 y Figure 14, in which the predicted surface can be
observed closely follows the shape of experimental data, indicating that polyno-
mial captures the overall behavior of the system effectively.
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Finally, to check the assumption of random error, the residual histogram was
graphed in Figure /4 with outliers in one we can observe a normal distribution
with peak centered in zero with a peak in this value in figure 15 show that dis-
tribution of residues continue in a shape bell gauss before outliers was eliminated,

so we can affirm that errors of the model are small and symmetries
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Figure 5. (a) Histogram with outliers; (b) Histogram without outliers.

We also constructed a residual plot shown in Figure 17 based on the 30 rule
criterion that covers at least 97% of the sample and some outliers are observed

In Figure 18, we analyze the residuals with the 95% confidence interval crite-
rion in what we use the function RCOPLOT of MATLAB. We can observe a mayor
number of outliers, that’s indicates that observations exist in our data out of the
range that won’t fit to our model, maybe due to error in measurement.
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Figure 6. (a) Sigma Rule Residues; (b) Residues with a 95% Confidence Interval.

5. Conclusions

This work shows that indoor temperature is strongly influenced by outdoor
environmental air conditions (T4, T5, T9 and HR3), as well internal thermody-
namic conditions that involve equipment like refrigerant (T1 , T7 ), compressor
(PO1) and Capillary Tube(T8). These findings can be applied in futures studies of
mini split systems exploring alternatives capillary tube designs or heat exchanger
configurations and in fault detection methods for predictive maintenance.

Polynomial obtained a good fit to experimentally values. In addition, reducing
number of variables from 21 to 8, it can explain up to 91% of variation in T10,
furthermore polynomial incorporates not only linear terms but also interaction
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terms between variables to enhance predictive accuracy. Through residual analysis
and the generation of surface and contour plots, model’s adequacy has been effec-
tively assessed. Result is a simple but efficient polynomial, based on real data,
that holds potential for use in more complex models for optimization, control, real-
time prediction, or energy management in HVAC systems.
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