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Abstract 

Hybrid solar panels, or photovoltaic-thermal (PVT) systems, simultaneously con-

vert solar radiation into electricity and heat within the same unit. This study anal-

yses a dataset obtained from a hybrid solar panel with an experimental setup. A 

polynomial regression model based on three variables: solar irradiance, fluid flow 

rate, and thermal output energy. Analysis produced a polynomial model correlating 

these variables with thermal efficiency (ηt), achieving a determination coefficient 

of R² = 0.8870. Contour and surface plots of the performance coefficient as func-

tions of input variables are provided, along with a residual analysis to assess the 

model's accuracy. 

Keywords: Hybrid solar panel; Photovoltaic-thermal system; Residual analysis. 

1. Introduction 

Hybrid solar panels, or photovoltaic-thermal (PVT) systems, this dual-use de-

sign improves energy utilization by capturing and managing heat generated by 

photovoltaic cells, improving their efficiency and regulating operating tempera-

tures [1]. 

A PVT system integrates a photovoltaic module with a thermal collector, of-

fering higher energy generation density compared to separate systems. This unified 

approach contributes to the development of sustainable solutions for both electric-

ity and heat production [2]. Prior studies have shown that transparent covers min-

imize thermal losses and energy dissipation, thereby improving system perfor-

mance [3]. 

Since the early 2000s, global collaboration on PVT technologies has intensi-

fied. However, deployment challenges persist, requiring further research. Accurate 

modelling of input-output relationships is crucial for optimizing performance. Re-

searchers have employed experimental mathematical models, regression tech-

niques, artificial neural networks, and time-series-based statistical methods to pre-

dict solar system performance [4][5]. 

Among regression techniques, polynomial fitting offers a practical and accu-

rate method for modelling nonlinear relationships. Escobedo et al. [6] compared 

artificial neural networks (ANNs) with polynomial models, concluding that alt-

hough ANNs may outperform in accuracy, polynomial models are advantageous 

due to their simplicity and ease of derivation. 
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This study proposes an efficient methodology to model PVT system perfor-

mance using polynomial regression, reducing reliance on complex equations while 

achieving accurate coefficient estimation. 

2. Materials and Methods 

Figure 1 presents a schematic diagram of the experimental setup installed on 

a hybrid solar panel. System consists of a variable-speed circulator, Rilsan tubing, 

a thermostatic water bath, and a flow sensor used to measure the flow rate, as de-

scribed by Matteo et al. [7]. 

 

Figure 1. The experimental setup. Matteo et al [7].  

After exiting the aluminum block, working fluid is cooled in a thermostatic 

water bath before being recirculated by a pump to the cold inlet side, maintaining 

a constant temperature. To measure thermal and flow parameters, type K thermo-

couples were installed and connected to a DAP interface, which also records the 

frequency signal from a flow meter to calculate the system’s mass flow rate. Ad-

ditionally, a pyranometer was used to measure the solar radiation flux density 

(W/m²) in the experimental environment. Data acquisition and processing were 

optimized using an integrated LabVIEW interface, enabling efficient management 

of the experimental data [7]. Table 1 presents the operating range of the measured 

pyranometers. 

Table 1. Experimental operating conditions range of PVT system. 

Variable Name Operating Range Units Label 

Irradiance 897 – 1087 W/m² V1 

Fluid flow rate 1.9 – 23 L/min V2 

Thermal energy 63.9 – 100.9 W V3 

 

A dataset was generated based on the specific operating conditions of the sys-

tem, considering various parameters including fluid flow velocity, inlet and outlet 

sink temperatures, solar irradiance, ambient temperature and cell’s open-circuit 

voltage.  

The instantaneous thermal efficiency of the PVT system (ηt) was determined 

as the ratio of the thermal power generated to the incident solar power, as expressed 

in Equation (1): 

ƞt=Qt/Qi, (1)   
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The input power (Qi) is calculated as the product of the solar irradiance (G) 

and the collector’s aperture area (A), as shown in Equation (2): 

Qi=G.A, (2) 

Thermal power output (Qt) corresponds to the amount of heat extracted by 

working fluid. It is proportional to difference between outlet and inlet fluid tem-

peratures (ΔT), mass flow rate (ṁ), and specific heat capacity of the fluid (Cp), as 

described in Equation (3): 

Qt=m.Cp.∆T, (3) 

Methodology  

This section presents a methodology for developing a polynomial model that 

defines relationship between performance coefficient and system's operational var-

iables. This approach enables accurate system characterization and enhances pre-

dictive analysis. Construction of polynomial model is based on previously estab-

lished input variables. To generally represent relationship between these variables 

and performance coefficient, Equation (4) is introduced. 

Let p be an indeterminate polynomial function and ϵ a random error term. It is 

assumed that this error term follows a standard normal distribution.  

Figure 2 shows correlation matrix between input variables, which is used to assess 

the degree of correlation among independent variables. 

 

Figure 2. Input variables correlation matrix. 

3. Results 

With purpose of determining a polynomial model that offers best balance be-

tween model fit and parsimony, multiple linear regression is used to analyze the 

relationship between variables (V1, V2, V3) and the experimental performance 

coefficient (ηt). 

Table 2, presents performance coefficients corresponding to a linear combina-

tion of monomial terms included in model, excluding only constant term, which is 

equal to 50.1626. 

 

          

          

          

   

   

   

   

   

   

   

   

   

nt = p (V1, V2, V3) + ϵ, (4) 
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Table 2. Performance coefficient of each term in polynomial model. 

Factor Performance coefficient 

V12 0.3715 

V2  - 46.4592 

V22  - 227.5152 

V23 124.9192 

V32 - 0.0032 

(V1)(V2) 55.2697 

(V1)(V22) 242.5250 

(V2)(V3) - 121.0381 

(V2)(V3) 17.4685 

(V22)(V3) - 577.8241 

(V1)(V22)(V3) 65.4707 

(V1)(V2)(V32) - 4.3044 

 

In pursuit of a more streamlined polynomial model—with fewest variables 

and highest possible coefficient of determination (R²)— Several term combina-

tions were evaluated. Finally, Equation (5) was identified as optimal model, 

achieving an R² value of 0.8870. 

 

 

 

 

Polynomial in Equation (5) stands out for having the highest R² compared to 

other combinations and, furthermore, for its compact structure with a smaller num-

ber of related variables. As R² increases, complexity of the model also tends to 

increase 

In Figure 3, it can be observed that relationship is approximately linear be-

tween experimental performance coefficients and predicted values, to demonstrate 

validity of this polynomial regression model. 

 

  

Figure 3. Experimental performance coefficient versus predicted values. 

Residual Analysis 

Given that variables in polynomial Equation (5) include irradiance, flow rate, 

and thermal energy, a graphical representation of the polynomial predictor’s be-

havior is presented. In this plot, experimentally obtained performance coefficients 

are compared with the predicted values (Figure 3). 

nt = 50.1626 + 0.3715(V12) - 46.4592(V2) - 227.5152(V22) + 124.9192(V23) …              

- 0.0032(V32) + 55.2697(V1)(V2) + 242.5250(V1)(V22) - 121.0381(V2)(V3) … 

+ 17.4685(V2)(V32) - 577.8241(V22)(V3) + 65.4707(V1)(V22)(V3) - 

4.3044(V1*V2)(V32) 

(5) 
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Since polynomial regression model incorporates three distinct variables, con-

tour plots are generated in Figure 4 and surface plots in Figure 5, illustrate corre-

lation between predicted values versus experimental data points. 

 

Figure 4. Contour plots. Comparison of experimental performance coefficient and predicted values 

for each significant variable in polynomial model.     

Figure 5. Surface plots. Comparison of experimental performance coefficient and predicted values 

for each pair of significant variables in polynomial model. 

Figure 6 presents residuals histogram, which exhibits a bell-shaped distribu-

tion. On the right end of the diagram, slight deviations indicate an imperfect sym-

metry. This characteristic is further examined in Figure 7, where the relationship 

between the predicted performance coefficient and the standardized residuals is 

shown. Two horizontal reference lines at values of 3 and -3 are included. Outside 

these boundaries, five outliers are identified, which may influence polynomial 

model. 

Improve the accuracy of the fit, these outliers were excluded from the dataset, 

resulting in an improved coefficient of determination of R² = 0.9466. 

6



 

 

Figure 6. Histogram of standardized residuals a) with outliers, b) without outliers.  

 

Figure 7. Standardized residuals. 

Finally, to assess independence of residuals, Figures 7 and 8 are presented. 

Figure 8 specifically illustrates confidence intervals for each residual (green lines), 

with central point’s indicating residual values and red lines identifying outliers. 

These visualizations confirm that presence of a substantial number of outliers neg-

atively impacts model's stability, resulting in a decreased correlation coefficient. 

Outliers introduce significant variability into datasets, reducing the model's 

ability to accurately capture relationship between variables. Notable difference 

compared to initial R² value of 0.8870 demonstrates that these anomalous data 

points indeed interfere with the model's performance. Furthermore, standardized 

residuals deviate from a Gaussian distribution cantered at zero and exhibit non-

constant variance, violating key assumptions of polynomial regression. 
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Figure 8. Predicted performance coefficient versus standardized residuals. 

Primary purpose of ANOVA analysis is to evaluate experimental errors and 

perform a significance test to determine correlation between factors versus exper-

imental performance coefficient (ηₜ). Table 3 presents correlation degree of factors 

based on variables V1, V2, and V3, including their three-way interaction, accord-

ing to analysis of variance. 

F-values obtained for each factor are remarkably high (F = 7433.32 for indi-

vidual variables and F = 6797.58 for the interaction), accompanied by extremely 

low p-values (all ≪ 0.05), clearly indicating that the contributions of V1, V2, and 

V3, both individually and jointly are statistically significant. 

Table 3. ANOVA analysis of independent variables. 

Factor SS DF MS F Prob > F 

V1 79480 1 79479.97 7433.32 2.0358 e-108 

V2 79480 1 79479.97 7433.32 2.0358 e-108 

V3 79480 1 79479.97 7433.32 2.0358 e-108 

(V1)(V2)(V3) 1379.7 3 39738.99 6797.58 9.61865 e-229 

Error 1261.7 118 10.65   

 

The polynomial regression model yields: 

F=30.74  and  p<0.001 

These values indicate a strong statistical significance. Since: 

p<α=0.05 

The null hypothesis H0: β1 = β2 ⋯ βk = 0 is rejected, confirming that the 

model terms, taken together, significantly explain the variance in the dependent 

variable (ηt). Results confirm model validity and usefulness for predictive appli-

cations. 

Table 4 presents a comparative summary of modelling approaches used to es-

timate efficiency in photovoltaic-thermal (PVT) systems, focusing on predictive 

accuracy based on R². Although complex models tend to yield higher R² values, 

they aren’t always the most practical choice. In many cases, a simple polynomial 

model offers advantages, lower complexity, easier interpretation, and reduced 

overfitting risk, especially when working with limited or extrapolated data. 

Slightly lower R² may be acceptable if it improves robustness and generalization, 

making model applicable under real-world conditions where data often deviate 

from ideal patterns. 
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Table 4. Evaluation of Accuracy and Deviation in Efficiency Prediction Models for PVT Systems 

with Extrapolated Data. 

Author Method R2 

Payman et al. [8] Evolutionary Polynomial Regression 0.8836 

García [9] 

Linear 0.8865 

Polynomial 0.8686 

Persistent 0.8114 

Hossein et al. [10] 

 

Random Forest 0.9862 

Multilayer Perceptron 0.8775 

Support Vector Regression 0.7639 

Bautista et al. Polynomial 0.8870 

5. Conclusions 

A polynomial model was successfully developed using three operational var-

iables to predict performance coefficient of a photovoltaic-thermal (PVT) system. 

Results show that increasing coefficient of determination (R²) leads to greater pol-

ynomial complexity. Model achieved an R² = 0.8870, outperforming results re-

ported by Payman et al. [8], García [9], and Hossein et al. [10], whose approaches 

involved higher error terms. Despite its simplicity, proposed method proves ad-

vantageous by delivering lower prediction errors. 

Findings indicate that, even with a simplified structure, proposed model sur-

passes conventional approaches in accuracy. In particular, the estimation of PVT 

system’s independent variables shows high agreement with actual values, high-

lighting the model’s reliability and effectiveness in characterizing system behav-

ior. 
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Abstract 

Several methods have been developed to estimate energy efficiency of induction 

motors, and the accuracy of these methods varies with load factor, voltage and 

harmonics. In this work, a polynomial model was developed to predict energy ef-

ficiency coefficient in a induction motor (De Lorenzo DL 1021) using electrical 

and mechanical parameters, through a dependent variable and independent varia-

bles, obtaining an R2 value of 0.9926. 

Keywords: Energy efficiency, Induction motor, Polynomial model, Polynomial, 

Balanced voltage 

 

1. Introduction 

Induction motors (IM) represent approximately 70% of energy consumed by 

industry. Currently, only motors with a greater power than 500 hp are generally 

monitored due to they cost. Nonetheless, motors less than 500 hp represent 97% 

of motors in operations and consume 71% of energy used. On average, these mo-

tors do not operate more than 60% of their rated load due to oversized installations 

of low-load conditions, resulting in poor efficiency and wasted energy [1]. 

Regulatory frameworks have been established in different countries to reduce 

energy consumption. These regulations aim to improve average efficiency of IM 

available on the market. Requiring companies to comply with efficiency standards 

[2]. Efficiency and load factor monitoring in real-time are essential to evaluate the 

energy efficiency of inductions motors. However, assessing these parameters re-

quires highly intrusive and costly methods. 

As measurements in-situ alternatives, several methods have been developed 

to estimate efficiency and load factor, known as energy efficiency estimation meth-

ods. Some of these methods include the slip method, current method, equivalent 

circuit method, torque method, among others [3], which are mainly influenced by 

load factor [4]. 

One of the most effective approaches to analyzing IM, is characterize the pa-

rameters of its equivalent circuit. These parameters allows for determinant of a 

mathematical model representing electrical and magnetic effects occurring within 

induction motor [5]. 

In this study, an empirical prediction model was developed and validated 

based on polynomial construction through multiple linear regression analysis to 
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behavior predict of energy efficiency coefficient using electrical and mechanical 

parameters. Unlike existing studies that focus on achieving the highest prediction 

accuracy, our objective is construct a simple and easy-to-use model for industrial 

applications. 

2. Experimental Data 

The data used to adjust a model were obtained from experiment conducted on 

a test bench with a three-phase induction motor of 1.1 kW (De Lorenzo DL 1021), 

a brake control unit (De Lorenzo DL 1054TT) and a magnetic powder brake (De 

Lorenzo DL 1019P) [6]. Figure 1 shows configuration diagram of experimental 

test used for balanced sinusoidal voltage. 

Database used to get a polynomial was obtained varying torque from 0.50 to 

3 Nm in intervals of 0.25 Nm, while simultaneously measuring electrical and me-

chanical parameters shown in Table 1. To ensure the reliability and consistency of 

results, each test was repeated 10 times. A stable temperature was maintained dur-

ing test; for this purpose, in each interval, measurements were taken after temper-

ature had stabilized. 

Mechanical output power, Equation 1, was calculated using torque and rotor 

speed measurements [7]: 

𝑃𝑜𝑢𝑡 =
𝑇𝑠ℎ𝑎𝑓𝑡 ∙ 𝑛𝑚

9.549
 (1) 

Efficiency, Equation 2, was calculated using input and output power values 

[8]: 

𝜂 =
𝑃𝑜𝑢𝑡

𝑃𝑖𝑛
∙ 100% (2) 

Table 1. Electrical and mechanical parameters. 

Electrical Parameters Symbol Mechanical Parameters Symbol 

Line voltage 𝑉𝑎𝑏 , 𝑉𝑏𝑐 , 𝑉𝑐𝑎 Output power 𝑃𝑜𝑢𝑡  

Voltage angles 𝜃𝑎𝑏 , 𝜃𝑏𝑐 , 𝜃𝑐𝑎 Shaft torque 𝑇𝑠ℎ𝑎𝑓𝑡  

Line current 𝐼𝑎 , 𝐼𝑐 , 𝐼𝑐  Rotor speed 𝑛𝑚 

Current angles 𝜙𝑎, 𝜙𝑏 , 𝜙𝑐 Load factor 𝐿𝑐 

 

Figure 1. Schematic diagram of experimental test setup for balanced sinusoidal voltage. 
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3. Methodology 

Generally, relationship between variables of interest, Energy Efficiency coef-

ficient (EEC), and associated variables (inserter variables), are unknown but can 

be approximated using a polynomial model as follows [9]: 

𝐸𝐶𝐶 = 𝑝(𝑇𝑠ℎ𝑎𝑓𝑡, 𝑃𝑖𝑛, 𝑛𝑚, 𝑉𝑎𝑏, 𝑉𝑏𝑐, 𝑉𝑐𝑎 , 𝜃𝑎𝑏, 𝜃𝑏𝑐 , 𝜃𝑐𝑎, 𝐼𝑎 , 𝐼𝑐 , 𝐼𝑐 , 𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐 , 𝐿𝑐)

+  𝜀 
(3) 

Where 𝑝 is an unknown polynomial function and 𝜀 is random error. Is as-

sumed that 𝜀 is a random variable with a standard normal distribution. Equation 3 

defines the following set of predictor variables (Equation 4) 

𝐴: = {𝑉1, … , 𝑉12 | 𝑖 = 1, … , 12} (4) 

In Table 2, measured data assigned to a variable for polynomial construction 

can be observed. To obtain a simple polynomial, variable combinations used of 

first degree. Cardinality of set A is equal 12, due to are 12 terms in form V. There-

fore, there are 212 – 1 subsets of A, excluding the empy set. 

A linear regression was performed between subsets of A and EEC to find a 

simple polynomial that fits data. As mentioned in the previous paragraph, there are 

too many subsets of A; therefore, depend variables were discarded, resulting in 

variables shown in Table 3. 

Thus, number of combinations required for test is: 27 – 1=127. 

Then, coefficient of determination (R2) was calculated for each combination 

of variables and Energy Efficiency coefficient (EEC), and combination with high-

est coefficient (R2) was selected.          

Table 3. Selected variables.  

Table 2. Measured variables 

𝑉𝑖 Variable Unit 

𝑉1 𝑇𝑠ℎ𝑎𝑓𝑡 Nm 

𝑉2 𝑃𝑖𝑛  W 

𝑉3 𝑛𝑚 Rpm 

𝑉4 𝑉𝑎𝑏 V 

𝑉5 𝑉𝑏𝑐 V 

𝑉6 𝑉𝑐𝑎 V 

𝑉7 𝜃𝑎𝑏 𝜃 

𝑉8 𝜃𝑏𝑐 𝜃 

𝑉9 𝜃𝑐𝑎 𝜃 

𝑉10 𝐼𝑎 A 

𝑉11 𝐼𝑏  A 

𝑉12 𝐼𝑐 A 

𝑉13 𝜙𝑎 𝜃 

𝑉14 𝜙𝑏 𝜃 

𝑉15 𝜙𝑐 𝜃 

𝑉16 𝐿𝑐 p.u. 

4. Results 

Considering a polynomial that fits experimental EEC, highest determination 

coefficient is sought. Due to simplicity of polynomial obtained, Equation 5 was 

chosen, with a determination coefficient R2 of 0.9926, indicating a polynomial 

model accounts for 99.26% of variability in energy efficiency coefficient. 

𝑉𝑖 Variable Unit 

𝑉2 𝑃𝑖𝑛  W 

𝑉4 𝑉𝑎𝑏 V 

𝑉6 𝑉𝑐𝑎 V 

𝑉8 𝜃𝑏𝑐 𝜃 

𝑉10 𝐼𝑎 A 

𝑉12 𝐼𝑐 A 

𝑉14 𝜙𝑏 𝜃 
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𝐸𝐸𝐶 = 229.9383 + 0.2726(𝑉2) + 3.1024(𝑉4) − 2.3638(𝑉6)

− 1.0961(𝑉8) − 36.3166(𝑉10) − 14.8443(𝑉12)

− 54.1092(𝑉14) 

(5) 

In Figure 2, a positive relationship between predicted EEC and experimental 

EEc is shown, suggesting, in general as predicted efficiency coefficient increases, 

actual also tends to increase. This positive correlation indicates that model can 

capture general trend of EEC’s behavior. 

Considering variables involved in polynomial, graphs were generated to im-

prove a geometric perspective on behavior of predicted polynomial, experimental 

data and efficiency coefficients. 

To obtain a geometric representation of predicted polynomial’s behavior, 

given that our polynomial consists of seven variables, level curves and surface 

plots were generated for each of them, as shown in Figures 3 and 4, respectively. 

These figures illustrate the behavior of the variables in relation to our polynomial 

versus the experimental data. 

 

Figure 2. Experimental vs Predicted Efficiency Coefficient for the database. 
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Figure 3. Level curves comparing experimental and predicted efficiency coefficients for each sig-

nificant variable in polynomial model. 
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Figure 4. Level surfaces comparing experimental and predicted efficiency coefficients for each 

significant variable in polynomial model. 
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4.1. Residual analysis 

In this section, a residual analysis will be performed to verify polynomial fit 

of Equation 3. According to hypothesis, Equation 3 follows a Gaussian distribu-

tion, “under the assumption that it has a zero mean”, expected value (E) can be 

taken on both sides of equation as follows: 

𝐸(𝐸𝐶𝐶)

= 𝐸(𝑝(𝑇𝑠ℎ𝑎𝑓𝑡, 𝑃𝑖𝑛, 𝑛𝑚, 𝑉𝑎𝑏, 𝑉𝑏𝑐 , 𝑉𝑐𝑎 , 𝜃𝑎𝑏, 𝜃𝑏𝑐 , 𝜃𝑐𝑎, 𝐼𝑎 , 𝐼𝑐 , 𝐼𝑐 , 𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐 , 𝐿𝑐)

+  𝜀)  

= 𝐸 (𝑝(𝑇𝑠ℎ𝑎𝑓𝑡, 𝑃𝑖𝑛, 𝑛𝑚, 𝑉𝑎𝑏, 𝑉𝑏𝑐, 𝑉𝑐𝑎 , 𝜃𝑎𝑏, 𝜃𝑏𝑐 , 𝜃𝑐𝑎, 𝐼𝑎 , 𝐼𝑐 , 𝐼𝑐 , 𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐 , 𝐿𝑐))

+ 𝐸(𝜀) 

𝐸𝐶𝐶

= 𝐸 (𝑝(𝑇𝑠ℎ𝑎𝑓𝑡, 𝑃𝑖𝑛, 𝑛𝑚, 𝑉𝑎𝑏, 𝑉𝑏𝑐, 𝑉𝑐𝑎 , 𝜃𝑎𝑏, 𝜃𝑏𝑐 , 𝜃𝑐𝑎, 𝐼𝑎 , 𝐼𝑐 , 𝐼𝑐 , 𝜙𝑎 , 𝜙𝑏 , 𝜙𝑐 , 𝐿𝑐)) 

 

Considering last equation, experimental performance coefficient and polyno-

mial p would be equal on average. To determine whether e follows a normal dis-

tribution with zero mean and constant variance, a histogram of residuals was used 

(Figure 5). As observed, histogram has a bell-shaped form, suggesting that most 

residuals are concentrated near 0. This is done to ensure that residuals have zero 

mean and variance 1. 

Figure 5.  Histogram of residuals. 

Residuals were plotted in Figure 6, along with two horizontal lines at 3 and -

3. In this experiment, no points were found outside the interval; only one value 

approached these lines, so it considering that all residuals comply with the 3-sigma 

rule. This means there are no significant outliers, helping to confirm that residuals 

follow the expected distribution. 

In Figure 7, outliers are observed. To verify whether these values affect poly-

nomial model, five outliers were removed, and a new linear regression was per-

formed without them. A new R2 value of 0.9942 was obtained. The difference 

compared to R2 = 0.9926 with outliers is not significant, meaning outliers don’t 

interfere with our sample. Thus, it can be concluded that residuals follow a Gauss-

ian distribution with a mean of zero and a variance 1. 

To verify that the data obtained from experiment are reliable for our polyno-

mial, statistical F-test and p-value were applied [10]. To calculate the F-statistic, 

Equation 6 is used. 
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𝐹𝑣𝑎𝑙𝑢𝑒 =

𝑆𝑆𝑅
𝑑𝑓𝑀𝑜𝑑𝑒𝑙

𝑆𝑆𝐸
𝑑𝑓𝐸𝑟𝑟𝑜𝑟

 (6) 

Figure 6. Standardized residuals. 

Figure 7. Predicted EEC vs residuals. 

Where SSR is sum of squared differences between model data and mean of 

experimental data, SSE is sum of squared residuals, 𝑑𝑓𝑀𝑜𝑑𝑒𝑙 represents degrees of 

freedom in polynomial, 𝑑𝑓𝐸𝑟𝑟𝑜𝑟 corresponds to degrees of freedom of error as ex-

pressed in Equation 7, and 𝑛 is number of rows in the database: 

𝑑𝑓𝐸𝑟𝑟𝑜𝑟 = 𝑛 − 𝑑𝑓𝑀𝑜𝑑𝑒𝑙 − 1 
(6) 

These data were used for hypothesis, which consisted of two hypotheses: a 

null hypothesis 𝐻0 and an alternative hypothesis 𝐻1. For null hypothesis, assump-

tion was made that there is no relationship between independent variables and en-

ergy efficiency coefficient, while alternative hypothesis represents opposite-that 

there is a relationship between variables and EEC. Aim was to validate only one 

of these hypotheses. 

P-value obtained is extremely small 1.1311e-105, indicating that probability of 

results occurring by chance is practically zero, meaning that null hypothesis is 
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highly improbable. Regarding 𝐹𝑣𝑎𝑙𝑢𝑒  > 𝐹𝑐𝑟𝑖𝑡𝑖𝑐𝑎𝑙. In other words, data suggest that 

effect of independent variable is significant, validating that our polynomial has a 

real impact on variability of data. Thus, we accept the alternative hypothesis. 

Table 4.  ANOVA table results. 

Source SS df MS F 𝑃𝑟𝑜𝑏 > 𝐹 

Columns 7.31469 × 107 8 Nm 1047.27 0 

Error 8.56477 × 106 981 W   

Total 8.17117 × 107 989 Rpm   

 

To verify that variables used in our polynomial are independent, an analysis 

of variance (ANOVA) was performed between variables used for polynomial and 

experimental EEC, with results shown in Table 4. 

Since p-value is 0, we reject null hypothesis, which in this case states that there 

are no significant differences between means of analyzed groups. This means that 

there are indeed significant differences among the groups (columns). In simpler 

terms, at least one of the group means is significantly different from others, sug-

gesting that analyzed factor has a real effect on measurements. 

5. Conclusions 

Losses in a three-phase induction motor can use many adverse effects, such as 

excessive heating, reduced life span increased energy consumption. These factors 

contribute to higher operating costs and greater environmental damage resulting 

from inefficient energy use. Therefore, real-time monitoring of motor energy effi-

ciency during operation in essential for any induction motor (IM). This requires a 

sensor in-situ capable of providing such information without the need for addi-

tional equipment. Resulting polynomial can calculate EEC, thus reducing costs by 

relying solely on motor’s existing electrical parameters. 

In this study, a polynomial was used to predict energy efficiency and induction 

motor. Favorable results were obtained and a polynomial model with a good de-

termination coefficient (R2) was achieved, capable of predicting energy efficiency 

in situ. This high precision suggests that polynomial model captures relationships 

between operating variables and energy efficiency coefficient. 
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Abstract 

Prototype used is a mobile wick solar still with passive external condenser, powered 

by solar energy, developed by the company IPFH2O. Performance modeling 

involved analysis of global irradiation and temperature parameters. Two polynomial 

models are proposed to estimate coefficient of performance energy (COP) and 

coefficient of performance exergy (COPexe), with coefficients of determination of 

0.9855 and 0.9985, respectively. Study provides a fast method to estimate energy 

efficiency and exergy efficiency without requiring complex measurements. 

Keywords: Solar still, Global irradiation, Performance coefficient. 
 

1. Introduction 

Water purification and distillation using solar radiation is an evolving technique that 

offers economic advantages, such as electricity savings and water availability in 

remote areas, avoiding transportation costs [1]. However, this technology suffers 

from drawback of low efficiency, which may explain its limited adoption [2]. Water 

production in passive solar stills [3] is influenced by key parameters such as solar 

irradiation and temperature gradients [4]. Furthermore, these systems can be 

employed for water desalination via distillation, recognized as one most fundamental 

and cost-effective purification techniques [5]. Prototype features a 45° tilt angle and 

a double-glazing configuration to enhance thermal performance and overall system 

efficiency [6]. 
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2. Materials and Methods 

Tests were conducted over four days since October until December 2021 under 

climate conditions of Rennes, France. Manual solar monitoring of system was 

conducted at one hour intervals during the test days. [2]. Figure 1 shows prototype 

used. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In 

this section the objective is to describe a model for each coefficient of performance 

(COP and COPexe). Polynomial fitting was performed using experimental energy 

efficiency data as a function of global irradiation (Ir) and mobile wick temperature 

(Tw). Hourly energy efficiency was determined according to Equation 1. 

 

 

                 

L = 3.1615 × 106 − (7.616 × 10−4 ・Tw)                                                                               (2) 

 

Where: 

nH: Hourly energy efficiency. 

mH: Mass of water produced per hour in kg. 

L: Latent heat of vaporization of water in J/kg. 

Aw: Area of the wick surface exposed to the sun in m2. 

Tw: Wick temperature in °C. 

It: Global irradiation in W/m2. 

 

 

  

nH= (mHL)/(AwIt)                                                                                                                                                                                                         (1) 

Figure 1. a) Components of the mobile solar still with Passive Condenser, b) Components 

of the evaporator tray of the solar still [2] 
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The fitting is similar to Equation 3 with two input variables, where p is a polynomial 

and ϵ represents random noise assumed to follow a normal distribution [7]. 

 

                             COP = p(Tw, Ir) + ϵ                                                                                                      (3) 

 

Model has a coefficient of determination R2 of 0.9855, indicating that it explains 

most of the variability. Similarly, experimental exergy data were used to fit a 

polynomial model based on collected variables: Wick temperature (Tw), Global 

Irradiation (Ir), Ambient Temperature (Ta), and Interior Glass Temperature (Tgi). 

Exergy was calculated using Equation 4. 

                            nexer = Exout/Exinp                                                                                              (4) 

Where:  

nexer: Exergy 

Exout: Exergy related to evaporation process in the space between wick and inner 

glass. 

Exinp: Exergy of the solar radiation absorbed by the wick. 

 

Fitted model for exergy is presented in Equation 5, with four input variables. 

                            COPexe = p(Tw, Ir, Tgi, Ta) + ϵ                                                                (5) 

 

It achieved a coefficient of determination R2 of 0.9985, indicating that 99.85% of 

the variability in exergy coefficient of performance can be explained by this 

polynomial model. 

System variables are shown in Table 1. 

                Table 1. System variables. 

 Variable Unidad 

x1 Tw °C 

x2 Ir W/m2 

x3 Ta °C 

x4 Tgi °C 

 

Input 1 (x1): Temperature of the mobile wick, 2 °C lower than temperature inside 

the evaporator tray. Due to wick is absorption of water and heat, its temperature can 

be slightly lower [8]. 

Input 2 (x2): Global irradiation, corresponding to values obtained with an analog 

pyranometer during the experiment. 

Input 3 (x3): Ambient temperature. 

Input 4 (x4): Inner glass temperature. 

Polynomial fitting method is an effective strategy for predicting the behavior of a 

dependent variable within a system, using measurements from collected data [9]. 

Two polynomial models were developed to predict behavior of two indicators: the 
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energy performance coefficient (COP) and the exergy performance coefficient 

(COPexe).  

Both polynomials were obtained through multivariable polynomial regression, 

seeking the relationship between the independent variables and the performance 

coefficients. Models include both linear and interaction terms. 

3. Results 

Energy Efficiency Model (Eq. 6): This model is a third degree polynomial with 

two independent variables, Tw and Ir, composed of nine terms. The selection of the 

independent variables was based on Eq. 1, where water mass produced per hour 

(mH) and surface area of the wick exposed to the sun (Aw) were considered constant. 

 

COP = 110.4348 + 4.4378(x1) − 1.3355(x2) − 0.2966(x1)2 + 0.0045(x2)2 

− 3.9751x10−4(x1)(x2) + 0.0063(x1)3− 4.7245x10−6(x2)3                                                    (6) 

 

Exergy Model (Eq. 7): A quadratic polynomial was constructed, consisting of 15 

terms. Four independent variables were considered for its development: Tw, Ir, Ta, 

an Tgi, which are used in the experimental exergy. 

 

COPexe = −238.7276 − 1.7037(x1)2+ 0.0006(x2)2− 3.3545(x3)2− 3.7648(x4)2 

− 0.0310(x1)(x2) + 5.7139(x1)(x3) + 5.2319(x1)(x4) + 43.000(x2)(x3) 

+0.0271(x2)(x4) − 5.5808(x3)(x4) − 74.8790(x1) + 0.3003(x2) 

+ 47.8111(x3) + 82.5614(x4)                                                                                             (7) 

 

 

Figure 2b shows low correlation between independent variables, which benefits 

obtained model for Energy Efficiency. On the left, plot of Experimental vs 

predicted Efficiency confirms a satisfactory data fit, showing how points align with 

trend line. 

 

 

 

 

Exergy indicates how much energy content can be utilized from system. In a solar 

still, energy losses are lower compared to other equipment such as boilers [10], 

which facilitates model application. This is reflected in graph of experimental vs 

calculated exergy values (Figure 3), where proximity of points to trend line 

indicates a good model fit. 

Figure 2. a)Experimental versus predicted coefficient of performance for database, b) 

correlation matrix between input variables. Energy Efficiency. 
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3.1 Residual Analysis 

This section presents evaluation of residuals using histograms and probability plots 

to determine their normality. In addition, residual plots are generated to identify 

outliers, which helps verify quality of polynomial model [10]. To understand 

behavior of two developed polynomials, experimental and predicted coefficients of 

performance corresponding each one are graphically represented. Both polynomials 

include different variables, contour plots are generated for each of them. Graphical 

representations are shown in Figures 4, 5, 6, 7, 8, and 9. Agreement between 

predicted and experimental values is observed. 

 

 

 

 

Figure 3. a) Experimental versus predicted coefficient of performance for database, b) correlation 

matrix between input variables. Exergy. 

 

Figure 4. Level surfaces. Comparison of experimental and predicted coefficient of performance 

for each variable significant in the polynomial model Energy Efficiency 
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Figure 5. Level surfaces. Comparison of experimental and predicted coefficient of performance for 

each variable significant in the polynomial model Exergy 

 

Figure 6. Level surfaces. Comparison of experimental and predicted coefficient of performance for 

two variables significants in the polynomial model Energy Efficiency. 
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Figure 7. Level surfaces. Comparison of experimental and predicted coefficient of performance for 

Tw/Ir and Tw/Ta in the polynomial model Exergy. 

Figure 8. Level surfaces. Comparison of experimental and predicted coefficient of performance for 

Tgi/Ta and Tgi/Ir in the polynomial model Exergy. 

Figure 9. Level surfaces. Comparison of experimental and predicted coefficient of performance for 

Ta/Ir and Tw/Tgi in the polynomial model Exergy. 

26



 

 

Assuming that models described in Equations 3 and 5 follows a Gaussian 

distribution, residual histograms were constructed for each coefficient of 

performance, following methodology outlined by Montgomery [10]. Histograms 

have a bell-shaped form, as shown in Figure 10. However, in Exergy case , a 

notorious bar appears at end of histogram, which may indicate the indicate of 

outliers (see Figure 11). 

 

Figure 12 was generated to show fitting goodness of proposed models. Displays 

standardized confidence intervals (green lines) corresponding to each residual 

(represented by circles), with outliers highlighted in red. This indicates that 

predicted values closely match observed ones. Furthermore, Figures 13 and 14 

show that mean of residuals is approximately zero, as their distribution remains 

balanced on either side of y-axis. 

 

 

 

 

Figure 10. Histogram of residuals for Energy 

Efficiency. 

Figure 11. Histogram of residuals for Exergy 

Figure 12. Confidence intervals of residuals with a 95% confidence level: a) Energy Efficiency 

and b) Exergy.  
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3.2 Anova 

An analysis of variance (ANOVA) was carried on both proposed models (Table 2 

y 3), demonstrating that each is highly significant. Null hypothesis (H0) states that 

no independent variables have a significant effect on dependent variables. 

Alternative hypothesis (H1) states that at least one independent variable has a 

significant effect on dependent variable, meaning model explains a significant part 

of observed variability. For Energy Efficiency model, Error accounts for less than 

1.5% of total data variability (887.6 out of 61,068), which indicates an excellent fit 

to experimental data. A p-value below 0.001 confirms that the model is highly 

significant, suggesting the observed results are very unlikely under null hypothesis. 

Based on F-distribution tables, for a 5% significance level and with 7 degrees of 

freedom in numerator (independent variables) and 45 degrees of freedom in 

denominator (total number of observations minus the number of estimated 

parameters), critical value is: 

Fcritical = 3.065 

so,  

Fcalculated = 485.87 > Fcritical = 3.065 

Therefore, null hypothesis is rejected, and model is statistically significant. Is 

accepted that at least one variable has effect on Energy Efficiency. 

Table 2: Analysis of variance (ANOVA) of polynomial model for Energy Efficiency 

 

 

 

Source Sum of Squares (SS) DF Mean Square (MS) F p-value 

Model 60,181 7 8 597.2 435.87 0 

Error 887.6 45 19.72   

Total 61,068 52    

Figure 13. Predicted coefficient of performance 

for Energy Efficiency versus standardized 

residuals. 

Figure 14. Predicted coefficient of performance 

for Exergy versus standardized residuals. 

. 
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Table 3. Analysis of variance (ANOVA) of polynomial model for Exergy. 

 

 

 

4. Conclusions 

During implementation of a solar still with a mobile wick, data collection can be 

affected by climatic limitations, as well as difficulties in handling equipment due 

to weight. The development of a model for estimating system efficiency offers 

valuable support for obtaining operational data, reducing costly experimental 

procedures. Two polynomial models were successfully developed to predict 

coefficient of performance for Energy and Exergy Efficiency in a solar still with 

mobile wick and passive external condenser, with coefficients of determination 

exceeding 98% is possible to estimate system behaviour using easily measurable 

variables, thus avoiding complex instrumentation. 
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Resumen 

Se propone un modelo polinomial, expresado en variables codificadas y naturales, 

para predecir la cantidad de arsénico remanente al efectuar la extracción de dicho 

contaminante en medio acuoso empleando quitosano como medio adsorbente. Se 

aplica el Método de Respuesta de Superficie (RSM) considerando las condiciones 

de pH, tiempo de contacto, concentración de arsénico y concentración del adsor-

bente (quitosano) para proponer las condiciones óptimas en las que aumenta la 

remoción de arsénico. El modelo polinomial propuesto presenta una buena apro-

ximación, pues el coeficiente de determinación obtenido es de 0.9983. Se presen-

taron curvas de nivel y análisis residuales para la validación del modelo. Este tra-

bajo pretende ser de ayuda para la predicción de arsénico remanente y así disminuir 

la cantidad de experimentos a realizar en el análisis de extracción de arsénico me-

diante quitosano. 

Palabras clave: RSM, arsénico, contaminante, modelo polinomial, adsorción 
 

1. Introducción 

El arsénico es un metal pesado que se puede encontrar de manera natural en 

rocas y sedimentos; sin embargo, las concentraciones de éste tienden a aumentar 

en el medio natural debido a las actividades humanas, tal como la quema de carbón 

que usualmente es efectuada en centrales eléctricas, industrias de fundición de co-

bre y procesamiento de minerales [1]. En algunas ocasiones, este compuesto inor-

gánico es difícil de extraer del medio en el que se encuentra debido a las diversas 

condiciones, como lo puede ser el pH [2]. Por otro lado, el arsénico es tóxico al 

igual que los demás metales pesados, por lo que merece atención especial por su 

volatilidad, su capacidad de bioacumularse en el ambiente y a que es potencial-

mente cancerígeno [3].  

Debido a ello, se ha estado estudiando la implementación de diversos mate-

riales y métodos que ayuden a su extracción, siendo el quitosano uno de los más 

empleados para dicha extracción, el cual suele extraerse del caparazón de mariscos. 

Esto se debe a que aunque existen diversos métodos que pueden emplearse para 

remover el arsénico, como: oxidación/precipitación, coagulación, intercambio ió-

nico y tecnología de membranas, el quitosano presenta bajo costo, se puede con-

seguir fácilmente, es biodegradable, no es tóxico y posee propiedades estructurales 

que favorecen la extracción del arsénico, ya que se lleva a cabo mediante el método 
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de adsorción, el cual es uno de los métodos más simples y efectivos en remoción 

de contaminantes [4]. 

Generalmente, este tipo de análisis de extracción de contaminantes suele mo-

delarse mediante el Método de Respuesta de Superficie (RSM, por sus siglas en 

inglés), pues es empleado para el análisis de procesos químicos. No obstante, tam-

bién puede utilizarse a nivel ingeniería, ya que analiza los efectos de diversos pa-

rámetros de entrada (ξ1, ξ2, …, ξk) que puedan influir en una respuesta de salida, 

lo cual ayuda a reducir el número de experimentos realizados para el análisis de 

remoción de contaminantes mediante predicciones, tal como se ha hecho para el 

análisis de remoción de amoniaco [5]. En este método se utilizan variables codifi-

cadas (x1, x2, …, xk) en lugar de las variables naturales, las cuales son las variables 

que se encuentran en las unidades en las que se realizaron las mediciones [6]; en 

este caso, en unidades de concentración (mg/L), pH y tiempo (min). Las variables 

codificadas consisten en variables adimensionales que facilitan el análisis sobre 

qué variables tienen mayor impacto en la respuesta del proceso, ya que de esta 

forma se pueden estimar los términos del modelo de forma independiente. 

En el presente trabajo se busca proponer un polinomio en variables codificadas 

y otro en variables naturales que sea capaz de predecir la cantidad de arsénico re-

manente al aplicar quitosano como medio adsorbente en un medio acuoso, to-

mando en cuenta la variación de pH, tiempo de contacto, concentraciones de arsé-

nico y concentraciones de adsorbente (quitosano), y, al mismo tiempo, analizar la 

relación que presenta el tiempo de contacto con la cantidad de adsorbato inicial 

presente en el proceso de remoción. 

2. Metodología 

Se obtuvieron datos experimentales de Dehghani y colaboradores [7], quienes 

analizan los efectos que poseen la cantidad de arsénico inicial, la cantidad de ad-

sorbente (quitosano), el pH y el tiempo de contacto en un proceso de extracción de 

arsénico. Los datos se presentan en el Apéndice A. 

Para encontrar el modelo de predicción de arsénico remanente se utilizó el 

software RStudio 2021.09.1 con el Método de Respuesta de Superficie, el cual 

relaciona condiciones de entrada con la variable de salida analizada; en este caso, 

la variable de salida es el arsénico remanente (Ecuación 1), donde ε incluye los 

efectos de errores de medición y efectos externos que no pueden controlarse, como 

los niveles de humedad, cambio de las propiedades y envejecimiento del material 

[6] y se espera que presente una distribución normal con varianza constante y me-

dia cero.  

𝑦 = 𝑓(𝜉1, 𝜉2, … , 𝜉𝑘) + 𝜀 (1) 

Sin embargo, el RSM analiza las variables codificadas (x1, x2, …, xk) en lugar 

de las variables naturales (ξ1, ξ2, …, ξk). Para realizar la transformación de varia-

bles se utiliza la Ecuación 2, en la cual se consideran los valores máximos, míni-

mos y centrales de los datos experimentales: 

𝑥𝑖 =
𝜉𝑖 − [max(𝜉𝑖) + min(𝜉𝑖)]/2

[max(𝜉𝑖) − min(𝜉𝑖)]/2
 (2) 

Una vez efectuado el cambio de variables, la aproximación se representa con 

la Ecuación 3: 

𝑦 = 𝑓(𝑥1, 𝑥2, … , 𝑥𝑘) +  𝜀 
(3) 
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Así mismo, se asignaron factores para identificar las condiciones experimen-

tales estudiadas (Tabla 1). 

 

Tabla 1. Asignación de factores  

Factor Variables 

A Cantidad de arsénico 

B Cantidad de quitosano 

C pH 

D Tiempo de contacto 

 1 Variables asignadas a cada factor empleado en el Método de Respuesta de Superficie 

 

Los niveles de las variables de operación (A, B, C y D) se establecieron en 

tres niveles: -1 (mínimo), 0 (centro), 1 (máximo), tal como se muestra en la Tabla 

2. 

 

Tabla 2. Rango experimental y codificado de las variables de operación 

Factor 
Rango y niveles 

-1 0 1 

A 194 295.5 397 

B 2 3 4 

C 4 5 6 

D 45 65 75 

* Se colocan datos codificados para facilitar la manipulación de datos durante el análisis es-

tadístico. 

 

Para validar el modelo polinomial se realizaron análisis residuales mediante 

métodos analíticos y gráficos. Por otro lado, se empleó el RSM para analizar la 

interacción que tiene la cantidad de arsénico inicial con el tiempo de contacto en 

cuanto a la adsorción de arsénico con quitosano. 

3. Resultados y discusión 

3.1. Modelo polinomial 

Se presenta el modelo polinomial (Ecuación 4) propuesto en variables codifi-

cadas, el cual presenta unidades de concentración en mg/L: 

 

𝐴𝑠𝑟𝑒𝑚𝑎𝑛𝑒𝑛𝑡𝑒 =  215.51 + 82.389𝑨 − 6.2633𝑩 + 1.7633𝑪 − 16.871𝑫 − 4.1386𝑨𝑩 − 3.4787𝑨𝑫

− 2.2633𝑩𝑫 + 3.7744𝑨𝟐 + 3.232𝑫𝟐 
(4) 

 

En el polinomio se utilizaron las cuatro variables de investigación (pH, tiempo 

de contacto y concentración de adsorbente y adsorbato), el cual posee un coefi-

ciente de determinación de 0.9983, siendo el valor de 1 el que representa la mejor 

aproximación, lo cual indica una buena correlación [8,9]. Por otro lado, al compa-

rar los valores de arsénico remanente predichos y experimentales (Figura 1) se 

obtuvo que los valores predichos coinciden con la mayor parte de los valores ob-

jetivo, pues coinciden tanto que se obtiene algo parecido a la recta identidad, la 

cual posee una pendiente de 1 y un intercepto de 0. 
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Figura 1. Arsénico remanente predicho contra el arsénico remanente experimental. 

La comparación entre el arsénico remanente experimental y predicho con res-

pecto a cada variable de análisis se muestra en la Figura 2, en la cual se puede 

apreciar que la mayoría de los valores aproximados coinciden con los experimen-

tales, siendo esto otro indicativo de que el modelo polinomial propuesto presenta 

buena aproximación; dicha figura surge de un seccionamiento de superficies de 

nivel en 3 dimensiones (Figura 3). 

  

(a) (b) 

  
(c) (d) 

Figura 2. Curvas de nivel. Comparación del arsénico remanente experimental y el arsénico predi-

cho para cada variable utilizada en el polinomio: (a) concentración inicial de arsénico; (b) concen-

tración del adsorbente; (c) pH; (d) tiempo de contacto. 
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(a) (b) 

Figura 3. Superficies de nivel. Comparación del arsénico remanente experimental y el arsénico 

remanente predicho para las variables significativas del modelo polinomial: (a) tiempo de contacto 

y concentración de arsénico inicial; (b) pH del medio y la concentración del adsorbente. 

3.2. Análisis estadístico 

El histograma de residuos estandarizados (Figura 4) presenta una distribución 

similar a la campana de Gauss, la cual una distribución normal con media cero y 

varianza constante. 

 

 

Figura 4. Histograma de residuos estandarizados. 

Se empleó el método 3-sigma, con líneas horizontales de 3 y -3 (Figura 5) para 

identificar alguno de los outliers que parecen estar presentes según el histograma 

de residuos estandarizados (Figura 4), ya que no presenta una simetría perfecta. 

Sin embargo, no se pudo apreciar ningún valor atípico, pues el 100% de valores se 

encuentra dentro de los valores de 3 y -3. 
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Figura 5. Residuos estandarizados del arsénico remanente predicho y experimental. 

Se obtuvieron los intervalos de confianza de los residuos con un nivel de con-

fianza del 95 % (Figura 6), donde los residuos se representan con puntos amarillos 

y los intervalos de confianza con líneas verdes. En dicha figura se aprecian 4 va-

lores atípicos, los cuales pueden ser los que se ven reflejados en el histograma de 

residuos estandarizados. Al mismo tiempo, se observa que los residuos (ε) presen-

tan media cero y su varianza es constante, pues se logra un “efecto espejo” en los 

intervalos de confianza, debido a que presentan una anchura similar, lo cual indica 

que el valor es consistente y aleatorio en todo el rango de datos observados. 

 

Figura 6. Intervalos de confianza en los residuos con un nivel de confianza del 95%. 

El aporte de cada variable en el modelo se analizó mediante el Análisis de Varianza (ANOVA), 

Tabla 3. En dicho análisis se puede observar que, con base al P-value, todas las variables elegidas 

para el modelo polinomial son importantes y altamente importantes para lograr una buena 
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aproximación. El P-value ayuda a diferenciar resultados que son producto del azar del muestreo de 

resultados que son estadísticamente significativos. 

 Tabla 3. Coeficientes estimados del modelo polinomial de segundo grado y resultados de 

ANOVA. 

Modelo cuadrático 

Factor Coeficiente estimado Error estándar P-value 

A 82.3887 
0.8136 <0.0001 

B -6.2633 0.8149 <0.0001 

C 1.7633 0.8149 0.041593 

D -16.8712 0.6659 <0.0001 

AB -4.1386 0.8139 <0.0002 

AD -3.4787 0.8124 <0.0003 

BD -2.2633 0.8149 0.01098 

A2 3.7744 1.2052 0.004852 

D2 3.232 0.6160 <0.0001 

* P<0.001 altamente importante; 0.001≤ P ≤ 0.05 importante; P > 0.05 no importante. 

El análisis de la interacción del tiempo de contacto y el arsénico inicial durante 

el proceso de adsorción se presenta en la Figura 7. En dicho análisis se utilizaron 

una concentración de adsorbente de 3 mg/L y un pH de 5; con base a ello, la mayor 

cantidad de arsénico remanente se obtiene cuando el tiempo de contacto del adsor-

bato y el adsorbente se encuentra entre los 30 y 40 min con grandes concentracio-

nes de arsénico inicial, mientras que la cantidad óptima de arsénico remanente se 

obtiene cuando se trabaja con un tiempo de contacto aproximado de 60 y 90 min 

con concentraciones de arsénico inicial entre 200 y 250 mg/L, pues se pretende 

obtener la menor cantidad de arsénico remanente posible. 

 

Figura 7. Respuesta de superficie de la interacción entre el tiempo de contacto y la concentración 

de arsénico inicial 
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El modelo polinomial en términos de variables naturales (Ecuación 6) es el 

siguiente: 

𝐴𝑠𝑟𝑒𝑚𝑎𝑛𝑒𝑛𝑡𝑒 = 32.99 + 0.85461(𝐶𝐴𝑠,𝑖𝑛𝑖𝑐𝑖𝑎𝑙) + 14.839(𝐶𝑎𝑑𝑠) + 1.7633(𝑝𝐻) − 1.7206(𝑡)

− 0.040775(𝐶𝐴𝑠,𝑖𝑛𝑖𝑐𝑖𝑎𝑙 ∗ 𝐶𝑎𝑑𝑠) − 0.0022849(𝐶𝐴𝑠,𝑖𝑛𝑖𝑐𝑖𝑎𝑙 ∗ 𝑡) − 0.15089(𝐶𝑎𝑑𝑠 ∗ 𝑡)

+ 0.00036636(𝐶𝐴𝑠,𝑖𝑛𝑖𝑐𝑖𝑎𝑙
2) + 0.014364(𝑡2) 

(6) 

Donde: 𝐶𝐴𝑠,𝑖𝑛𝑖𝑐𝑖𝑎𝑙, es la concentración de arsénico inicial, mg/L, 𝐶𝑎𝑑𝑠 , es la 

concentración de adsorbente empleado, mg/L, pH, es el del medio en el que se 

efectuó la adsorción, 𝑡, es el tiempo de contacto, min. 

4. Conclusiones 

Se obtuvo un polinomio con un coeficiente de determinación de 0.9983, y con 

base al análisis residual realizado, se puede decir que el polinomio obtenido con 4 

variables puede predecir correctamente el arsénico remanente en un rango de pH 

(4 a 6), tiempo de contacto (45 a 75 min), concentración de arsénico inicial (194 a 

397 mg/L) y concentración de adsorbente (2 a 4 mg/L). Asimismo, se determinó 

que la concentración de arsénico inicial y el tiempo de contacto tienen un impacto 

importante en el proceso de adsorción, pues mientras mayor sea el tiempo de con-

tacto menor es la cantidad de arsénico remanente, siendo un rango óptimo de ope-

ración un tiempo de contacto entre 60 y 90 min con arsénico inicial entre 200 y 

250 mg/L. 

Contribución de los autores: Manejo de variables para análisis estadístico, me-

todología, validación, interpretación de resultados, investigación, escritura, visua-

lización: Fernanda Guzmán Recino Conceptualización y supervisión del proyecto: 

Francisco Alejandro Alaffita Hernández. Conceptualización: Benoit Auguste Ro-

ger Fouconnier. 

Financiamiento: La autora agradece a la Secretaría de Ciencia, Humanidades, 

Tecnología e Innovación (SECIHTI) por el otorgamiento de la beca de doctorado. 

Declaración del Comité de Ética: No aplicable.  

Declaración de Consentimiento Informado: No aplicable. 

Declaración de Disponibilidad de Datos: Las contribuciones originales de este 

estudio están incluidas en el artículo; cualquier consulta adicional puede dirigirse 

a los autores de correspondencia. 

Conflictos de Interés: Los autores declaran que no hay conflictos den interés. 

Abreviaturas 
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As Arsénico 
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Cads Concentración adsorbida 

CAS, inicial Concentración inicial de arsénico 
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Apéndice A 

Tabla A. Datos utilizados para la obtención del modelo polinomial. 

Corrida CAs,inicial (mg/L) Cads 

(mg/L) 

pH Tiempo 

(min) 

Resultado As removido % Removido 

1 306 3 5 60 231 75 24.51 

2 397 4 6 75 274 123 30.98 

3 397 4 6 45 318 79 19.9 

4 397 2 4 75 298 99 24.94 

5 194 4 6 75 126 68 35.05 

6 306 3 5 60 221 85 27.78 

7 306 3 5 60 225 81 26.47 

8 306 3 5 60 223 83 27.12 

9 194 4 4 75 121 73 37.63 

10 397 4 4 45 314 83 20.91 

11 194 4 6 45 154 40 20.62 

12 399 2 6 75 301 98 24.56 

13 306 3 5 60 227 79 25.82 

14 194 2 6 75 131 63 32.47 

15 194 2 4 45 152 42 21.65 

16 397 4 4 75 272 125 31.49 

17 397 2 4 45 325 72 18.14 

18 306 3 5 60 224 82 26.8 

19 194 4 4 45 151 43 22.16 

20 397 2 6 45 339 58 14.61 

21 306 3 5 60 222 84 27.45 

22 194 2 4 75 133 61 31.44 

23 194 2 6 45 153 41 21.13 

24 306 3 5 60 226 80 26.14 

25 306 3 5 30 276 30 9.8 

26 306 3 5 90 198 93 35.29 

27 306 3 5 60 223 83 27.12 

28 306 3 5 60 225 81 26.47 

29 306 3 5 60 224 82 26.8 

30 306 3 5 60 221 85 27.78 

31 306 3 5 60 222 84 27.45 

32 306 3 5 60 223 83 27.12 

* Los datos fueron obtenidos de: Experimental dataset on adsorption of Arsenic from aqueous so-

lution using Chitosan extracted from shrimp waste; optimization by response surface methodology 

with central composite design. Dehghani, M. H., Maroosi, M., & Heidarinejad, Z. (2018). Data in 

Brief, 20, 1415-1421. https://doi.org/https://doi.org/10.1016/j.dib.2018.09.003 
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Abstract 

A polynomial was developed using multiple linear regression technique to predict 

final indoor air temperature at the outlet, of a 3.5 kW Mini split air conditioning 

system that uses R410A as refrigerant. The model was based on an experiment that 

utilized 21 sensors to measure variables such as temperature, pressure, humidity, 

power at different points and components of the system.  Three input control var-

iables were held constant throughout the experiment, which was conducted in a 

tropical weather condition of Barranquilla, Colombia. Results showed a coefficient 

of determination r^2  of 0.91, demonstrating model´s high predictive capability 

Keywords: Multiple Linear Regression, HVAC Systems, Temperature Prediction. 

 

1. Introduction 

Study of HVAC systems (Heating, Ventilation and Air Conditioning) has 

gained relevance because they represent 30% to 40% of global energy consump-

tion [1], [2], [3]. Energy management and energy consumption have become cru-

cial for developed countries [4], this aligned with the 2030 sustainable develop-

ment goals, that seek to reduce the carbon footprint and mitigate the effect of cli-

mate change. 

Another area of interest in study of HVAC systems is comfort and indoor air 

quality in buildings and residential homes; this has caused an increase in the global 

demand of air conditioning [5]. 

HVAC Systems are typically modeled using three approaches, the one defined 

as white box [6] which consists of using the laws of physics to describe the process, 

the second type called gray box [7] which is made up of physical models but with 

parameters calculated by algorithms and the black box model [8] where data is 

collected from the system under operating conditions and a mathematical relation-

ship is found between the input and output variables (usually performance) using 

statistical method such as linear regression or artificial neural networks(ANN). 

Although efforts have been made to change energy use in buildings, such as 

use of new materials, selection of HVAC equipment type, and operation mode [9], 

energy consumption depends mainly on its control, maintenance, and use by occu-

pants [10], [11], so it is important to develop  statistical and non-statistical models 

for predicting indoor temperature in order to develop better control systems. In 

turn, these models must contain a greater number of input variables of internal and 

external to increase the accuracy in estimating the inferred variable [12], [13], [14]. 
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Polynomial regression is a statistical tool that allows for the creation of a sim-

ple, fast, and precise empirical model to estimate a variable of interest, reducing 

computational costs in control system simulations and real-time estimations 

[15][16]17][18]. 

 

 Objective of this work was to develop a polynomial using multiple linear 

regression tool to predict final temperature of a Mini split type of HVAC system 

operating in Colombia’s weather. 

 Independent variables with the greatest impact on final temperature were 

identified, polynomial’s fit was assessed using coefficient of determination  r^2  

,and residuals were analyzed, additionally surface and contour plots were gener-

ated to visualize relationship between predicted and experimental temperature. 

2. Materials and Methods 

In this study, we predicted indoor temperature at the evaporator outlet, con-

sidering final temperature of a 3.5 kW air conditioning system operating with 

R410A as refrigerant.  

Dataset were obtained from Ramírez-León et al., 2023 [5], where effects of 

inlet temperature and humidity, and fan speed were evaluated through 16 interac-

tions scenarios.  

Table 1 and Figure 1 show the instruments and their distribution in the HVAC 

system. 

 

Table 1. Variables measured in the experiment [5]. 

Diagram Reference Description 

T1 Refrigerant temperature at the compressor inlet in °C 

T2 Compressor surface temperature in °C 

T3 Refrigerant temperature at the compressor outlet in °C 

T4 Outside air temperature at the condenser inlet in °C 

T5 Outside air temperature at the condenser outlet in °C 

T6 Coolant temperature in the condenser in °C 

T7 Refrigerant temperature at the condenser outlet in °C 

T8 Capillary tube surface temperature in °C 

T9 Indoor air temperature at the evaporator inlet in °C 

T10 Air temperature inside the evaporator outlet in °C 

P1 Refrigerant pressure at the compressor inlet in PSI 

P2 Refrigerant pressure at the condenser outlet in PSI 

P3 Refrigerant pressure at the condenser outlet in PSI 

P4 Refrigerant pressure at DX outlet in PSI 
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H1 Indoor air relative humidity at air hood in % 

H2 Relative humidity of the indoor air at the evaporator outlet in % 

H3 Relative humidity of the indoor air at the evaporator inlet in % 

I1/ PO1 Compressor current consumption in A/Compressor voltage in V 

I2 /PO2 Condenser fan current draw in A/Condenser fan voltage in V 

I3/ PO3 Evaporator fan current draw in A/Evaporator fan voltage in V 

F1 
Flow rate in the refrigerant liquid flowmeter at the condenser 

outlet in mL/min 

Figure 1. Mini-split diagram [5] 

 

All data from 16 iterations were used to propose the following model accord-

ing to equation (1): 

 

𝑇10 = 𝑝(𝑇1, … . 𝑇1𝑂, 𝑃1, … 𝑃4, 𝐻1, … 𝐻3, 𝑃𝑂1, … 𝑃𝑂3, 𝐹1) +  𝜖     (1) 

 

Where p is a polynomial 𝜖 the error, we assumed to follow standard normal 

distribution.  

 

 Model residuals were determined; residuals defined as difference between 

observed values and estimated values.  were analyzed with two criterions, the 

three-sigma rule and the 95% confidence interval criterion that were used to iden-

tify outlier (atypical values) which were subsequently removed. A least squares 

regression was then reapplied to polish polynomial. 

Polynomial performance was evaluated by determinate the coefficient of de-

termination 𝑟2 , additionally surface levels and contour lines plots were generated 

to visualize relationship between predicted and experimental temperature T10 and 

independent variables. 

 

3. Results 

When applying multiple linear regression the polynomial has an 𝑟2 0.9153 

which indicates that the model explains at least 91% of the variability of the inter-

nal temperature at the outlet of  condenser T10    [19],[20], [21], [22] by removing 
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outliers the parameter 𝑟2 = 0.9576 increased, and the polynomial is according to 

equation (2): 

 

 

𝑇10 = −60.7028 + 1.8178 ∗ 𝑇1 + 1.7566 ∗ 𝑇4 + 1.3654 ∗ 𝑇7 + 1.0400 ∗ 𝑇9 +

0.0238 ∗ 𝐻3 +   −1.0681 ∗ 𝑃1 +  −0.1885 ∗ 𝑇5 +  −0.5032 ∗ 𝑇8 − 0.0662 ∗ 𝑇1 ∗ 𝑇9 +

 −0.0038 ∗ 𝑇4 ∗ 𝑇7 + 0.0018 ∗ 𝑇7 ∗ 𝑃4 + 0.0247 ∗ 𝑇9 ∗ 𝑇8 + 0.0104 ∗ 𝑇1 ∗ 𝑇2                                                                                        

(2) 

 

 It indicates that the temperature T10 only depends on variables T1, T4, T7, T9, 

H3, P1, T5, T8, which are the significant terms for the correlation coefficient, we can 

infer that the most important variables determining the final temperature delivered 

by the mini-split indoors depend on the conditions of the outside air (T4, T5, T9, H3,), 

refrigerant (T1, T7, P1) and capillary tube (T8). Polynomial included: 

✓ Linear terms 

✓ Iteration terms between variables 

This structure allows capturing both linear and nonlinear behavior of the var-

iables with respect to T10  

In Figure 2, we are comparing the experimental T10    values against estimated 

by  polynomial,  showing  that most of data  points fit well with regression 

model 

 
Figure 2. Comparing estimated versus experimental value. 

 

Contour lines were generated to compare value of T10 both experimental 

value and one predicted by polynomial against independent variables, as shown in 

next figures Figure 3, Figure 4, Figure 5 y Figure 6, we can notice a close match 

between experimental and predicted values, demonstrating a good fit of polyno-

mial. 
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(a) (b) 
  

(c) (d) 

Figure 3. Contour lines: (a) T10 & T4; (b) T10 & PO1; (c) T10 & T2; (d) T10 & P4. 

Level surfaces are present in figures: Figure 7, Figure 8, Figure 9, Figure 10, 

Figure 11, Figure 12, Figure 13 y Figure 14, in which the predicted surface can be 

observed closely follows the shape of experimental data, indicating that polyno-

mial captures the overall behavior of the system effectively.  
  

(a) (b) 

                          

  

  

  

  

  

  

  

 
 
 

            

         

                     

   

  

  

  

  

  

  

 
 
 

            

         

                    

  

  

  

  

  

  

  

 
 
 

            

         

                  

  

  

  

  

  

  

  

 
 
 

            

         

44



 

  

(c)  (d) 
  

(e) (f) 
  

(g) (h) 

Figure 4. Level surfaces: (a) T10 against P4 & T4; (b) T10 against T5 & T8; (c) T10 against T2 & 

T4 ; (d) T10 against P4 & T9; (d) T10 against P4 & T9; (e) T10 against P4 & T1; (f) . 

Finally, to check the assumption of random error, the residual histogram was 

graphed in Figure 14 with outliers  in one we can observe a normal distribution 

with  peak  centered in zero with a peak in this value in figure 15 show  that dis-

tribution of residues continue in a shape bell gauss before outliers was eliminated, 

so we can  affirm that errors of the model are small and symmetries  
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(a) (b) 

 

Figure 5. (a) Histogram with outliers; (b) Histogram without outliers.  

We also constructed a residual plot shown in Figure 17 based on the 3𝝈 rule 

criterion that covers at least 97% of the sample and some outliers are observed 

In Figure 18, we analyze the residuals with the 95% confidence interval crite-

rion in what we use the function RCOPLOT of MATLAB. We can observe a mayor 

number of outliers, that’s indicates that observations exist in our data out of the 

range that won’t fit to our model, maybe due to error in measurement. 
  

(a) (b) 

  

Figure 6. (a) Sigma Rule Residues; (b) Residues with a 95% Confidence  Interval. 

5. Conclusions 

This work  shows that  indoor temperature is strongly influenced by outdoor 

environmental air conditions (T4, T5, T9 and HR3), as well internal thermody-

namic conditions that involve equipment like refrigerant (T1 , T7 ), compressor 

(PO1) and Capillary Tube(T8). These findings can be applied in futures studies of 

mini split systems exploring alternatives capillary tube designs or heat exchanger 

configurations and in fault detection methods for predictive maintenance. 

Polynomial obtained a good fit to experimentally values. In addition, reducing 

number of variables from 21 to 8, it can explain up to 91% of variation in T10, 

furthermore polynomial incorporates not only linear terms but also interaction 
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terms between variables to enhance predictive accuracy. Through residual analysis 

and the generation of surface and contour plots, model’s adequacy has been effec-

tively assessed.  Result is a simple but efficient polynomial, based on real data, 

that holds potential for use in more complex models for optimization, control, real-

time prediction, or energy management in HVAC systems. 
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